Pairwise Force SPH Model for Real-Time Multi-Interaction Applications

In this paper, we present a novel pairwise-force smoothed particle hydrodynamics (PF-SPH) model to enable simulation of various interactions at interfaces in real time. Realistic capture of interactions at interfaces is a challenging problem for SPH-based simulations, especially for scenarios involv...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 23(2017), 10 vom: 25. Okt., Seite 2235-2247
1. Verfasser: Yang, Tao (VerfasserIn)
Weitere Verfasser: Martin, Ralph R, Lin, Ming C, Chang, Jian, Hu, Shi-Min
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000naa a22002652 4500
001 NLM272229261
003 DE-627
005 20231224234425.0
007 cr uuu---uuuuu
008 231224s2017 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2017.2706289  |2 doi 
028 5 2 |a pubmed24n0907.xml 
035 |a (DE-627)NLM272229261 
035 |a (NLM)28541209 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Yang, Tao  |e verfasserin  |4 aut 
245 1 0 |a Pairwise Force SPH Model for Real-Time Multi-Interaction Applications 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 23.11.2018 
500 |a Date Revised 23.11.2018 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In this paper, we present a novel pairwise-force smoothed particle hydrodynamics (PF-SPH) model to enable simulation of various interactions at interfaces in real time. Realistic capture of interactions at interfaces is a challenging problem for SPH-based simulations, especially for scenarios involving multiple interactions at different interfaces. Our PF-SPH model can readily handle multiple types of interactions simultaneously in a single simulation; its basis is to use a larger support radius than that used in standard SPH. We adopt a novel anisotropic filtering term to further improve the performance of interaction forces. The proposed model is stable; furthermore, it avoids the particle clustering problem which commonly occurs at the free surface. We show how our model can be used to capture various interactions. We also consider the close connection between droplets and bubbles, and show how to animate bubbles rising in liquid as well as bubbles in air. Our method is versatile, physically plausible and easy-to-implement. Examples are provided to demonstrate the capabilities and effectiveness of our approach 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a Martin, Ralph R  |e verfasserin  |4 aut 
700 1 |a Lin, Ming C  |e verfasserin  |4 aut 
700 1 |a Chang, Jian  |e verfasserin  |4 aut 
700 1 |a Hu, Shi-Min  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 23(2017), 10 vom: 25. Okt., Seite 2235-2247  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:23  |g year:2017  |g number:10  |g day:25  |g month:10  |g pages:2235-2247 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2017.2706289  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 23  |j 2017  |e 10  |b 25  |c 10  |h 2235-2247