Discriminative Transformation for Multi-Dimensional Temporal Sequences

Feature space transformation techniques have been widely studied for dimensionality reduction in vector-based feature space. However, these techniques are inapplicable to sequence data because the features in the same sequence are not independent. In this paper, we propose a method called max-min in...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 26(2017), 7 vom: 20. Juli, Seite 3579-3593
1. Verfasser: Bing Su (VerfasserIn)
Weitere Verfasser: Xiaoqing Ding, Changsong Liu, Hao Wang, Ying Wu
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM272166995
003 DE-627
005 20231224234305.0
007 cr uuu---uuuuu
008 231224s2017 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2017.2704438  |2 doi 
028 5 2 |a pubmed24n0907.xml 
035 |a (DE-627)NLM272166995 
035 |a (NLM)28534772 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Bing Su  |e verfasserin  |4 aut 
245 1 0 |a Discriminative Transformation for Multi-Dimensional Temporal Sequences 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 11.12.2018 
500 |a Date Revised 11.12.2018 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Feature space transformation techniques have been widely studied for dimensionality reduction in vector-based feature space. However, these techniques are inapplicable to sequence data because the features in the same sequence are not independent. In this paper, we propose a method called max-min inter-sequence distance analysis (MMSDA) to transform features in sequences into a low-dimensional subspace such that different sequence classes are holistically separated. To utilize the temporal dependencies, MMSDA first aligns features in sequences from the same class to an adapted number of temporal states, and then, constructs the sequence class separability based on the statistics of these ordered states. To learn the transformation, MMSDA formulates the objective of maximizing the minimal pairwise separability in the latent subspace as a semi-definite programming problem and provides a new tractable and effective solution with theoretical proofs by constraints unfolding and pruning, convex relaxation, and within-class scatter compression. Extensive experiments on different tasks have demonstrated the effectiveness of MMSDA 
650 4 |a Journal Article 
700 1 |a Xiaoqing Ding  |e verfasserin  |4 aut 
700 1 |a Changsong Liu  |e verfasserin  |4 aut 
700 1 |a Hao Wang  |e verfasserin  |4 aut 
700 1 |a Ying Wu  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 26(2017), 7 vom: 20. Juli, Seite 3579-3593  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:26  |g year:2017  |g number:7  |g day:20  |g month:07  |g pages:3579-3593 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2017.2704438  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 26  |j 2017  |e 7  |b 20  |c 07  |h 3579-3593