Cholesterol Based Surface Active Ionic Liquid That Can Form Microemulsions and Spontaneous Vesicles

In this article, we have reported the synthesis and physicochemical characterization of a novel l-glycine amino acid derived cholesterol based surface active ionic liquid (SAIL). This SAIL has been explored for the preparation of ionic liquid (IL)-in-oil microemulsions and vesicles. The formation of...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1999. - 33(2017), 23 vom: 13. Juni, Seite 5891-5899
1. Verfasser: Pyne, Arghajit (VerfasserIn)
Weitere Verfasser: Kuchlyan, Jagannath, Maiti, Chiranjit, Dhara, Dibakar, Sarkar, Nilmoni
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
Beschreibung
Zusammenfassung:In this article, we have reported the synthesis and physicochemical characterization of a novel l-glycine amino acid derived cholesterol based surface active ionic liquid (SAIL). This SAIL has been explored for the preparation of ionic liquid (IL)-in-oil microemulsions and vesicles. The formation of IL-in-oil microemulsion is characterized by construction of a ternary phase diagram, dynamic light scattering (DLS) measurement, proton nuclear magnetic resonance (1H NMR) study, fluorescence measurement using coumarin 480 (C-480) as a molecular probe, and also by recording the diffusion behavior of the molecular probe rhodamine 6G (R6G) in microemulsion droplets through the fluorescence correlation spectroscopy (FCS) technique. Similarly, the spontaneous vesicle formation from the SAIL in water has been established using DLS, transmission electron microscopy (TEM), cryogenic-transmission electron microscopy (cryo-TEM), field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), FCS, and fluorescence lifetime imaging microscopy (FLIM) measurements. These aggregates may potentially serve as good biomimicking models and possible drug carriers
Beschreibung:Date Completed 13.07.2018
Date Revised 13.07.2018
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.7b01158