New Approach for the Synthesis of Nanozirconia Fortified Microcapsules

Robust poly(urea-formaldehyde) (PUF) microcapsules with composite shells comprising zirconia (ZrO2) nanopowder incorporated in PUF were fabricated via a novel and facile one-pot synthesis. ZrO2 nanopowder was chosen because it owns one of the highest mechanical strengths among ceramics. The nanopowd...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 33(2017), 23 vom: 13. Juni, Seite 5843-5851
1. Verfasser: Li, Chia-Chen (VerfasserIn)
Weitere Verfasser: Yu, Dzu-How, Chang, Shinn-Jen, Chen, Jia-Wei
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
Beschreibung
Zusammenfassung:Robust poly(urea-formaldehyde) (PUF) microcapsules with composite shells comprising zirconia (ZrO2) nanopowder incorporated in PUF were fabricated via a novel and facile one-pot synthesis. ZrO2 nanopowder was chosen because it owns one of the highest mechanical strengths among ceramics. The nanopowder was predispersed in the core material to combine encapsulation and fortification into a single process. In the core, the well-dispersed nanopowder migrated to the interface, where PUF polymerization took place. The mechanical strength of the microcapsule with nano-ZrO2 incorporated in the shell (42% by weight) is three times greater than that of the microcapsule without ZrO2. In a preliminary application wherein the microcapsules were embedded in a model of poly(vinyl alcohol) (PVA) membrane, the PVA specimen exhibited a higher ultimate tensile strength when fortified microcapsules were embedded than when unfortified microcapsules were used
Beschreibung:Date Completed 13.07.2018
Date Revised 13.07.2018
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.7b01066