Separated Immobilization of Incompatible Enzymes on Polymer Substrate via Visible Light Induced Living Photografting Polymerization

The use of the mixed catalytic system with several enzymes can provide multiple benefits in terms of the cost, simplification of a multistep reaction, and effectiveness of complex chemical reactions. Although study of different enzyme coimmobilization systems has attracted increasing attention in re...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 33(2017), 22 vom: 06. Juni, Seite 5577-5584
1. Verfasser: Zhu, Xing (VerfasserIn)
Weitere Verfasser: He, Bin, Zhao, Changwen, Ma, Yuhong, Yang, Wantai
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Enzymes, Immobilized Polyethylene Glycols 3WJQ0SDW1A
Beschreibung
Zusammenfassung:The use of the mixed catalytic system with several enzymes can provide multiple benefits in terms of the cost, simplification of a multistep reaction, and effectiveness of complex chemical reactions. Although study of different enzyme coimmobilization systems has attracted increasing attention in recent years, separately immobilizing enzymes which can not coexist on one support is still one of the great challenges. In this paper, a simple and effective strategy was introduced to separately encapsulate incompatible trypsin and transglutaminase (TGase) into different poly(ethylene glycol) (PEG) network layer grafted on low-density polyethylene (LDPE) film via visible light induced living photografting polymerization. As a proof of concept, this dual-enzyme separately loaded film was used to catalyze the synthesis of a new target antitumor drug LTV-azacytidine. The final results demonstrated that this strategy could maintain higher activities of both enzymes than the mixed coimmobilization method. And the mass spectra analysis results demonstrated that LTV-azacytidine was successfully synthesized. We believe that this facile and mild separately immobilizing incompatible enzyme strategy has great application potential in the field of biocatalysis
Beschreibung:Date Completed 23.01.2019
Date Revised 23.01.2019
published: Print-Electronic
Citation Status MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.7b00594