Multiscale Model for Electrokinetic Transport in Networks of Pores, Part II : Computational Algorithms and Applications

The first part of this two-article series presented a robust mathematical model for the fast and accurate prediction of electrokinetic phenomena in porous networks with complex topologies. In the second part of this series, we first present a numerical algorithm that can efficiently solve the model...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 33(2017), 25 vom: 27. Juni, Seite 6220-6231
1. Verfasser: Alizadeh, Shima (VerfasserIn)
Weitere Verfasser: Mani, Ali
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000naa a22002652 4500
001 NLM271943246
003 DE-627
005 20231224233817.0
007 cr uuu---uuuuu
008 231224s2017 xx |||||o 00| ||eng c
024 7 |a 10.1021/acs.langmuir.7b00591  |2 doi 
028 5 2 |a pubmed24n0906.xml 
035 |a (DE-627)NLM271943246 
035 |a (NLM)28509560 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Alizadeh, Shima  |e verfasserin  |4 aut 
245 1 0 |a Multiscale Model for Electrokinetic Transport in Networks of Pores, Part II  |b Computational Algorithms and Applications 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 16.07.2018 
500 |a Date Revised 16.07.2018 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a The first part of this two-article series presented a robust mathematical model for the fast and accurate prediction of electrokinetic phenomena in porous networks with complex topologies. In the second part of this series, we first present a numerical algorithm that can efficiently solve the model equations. We then demonstrate that the resulting framework is capable of capturing a wide range of transport phenomena in microstructures by considering a hierarchy of canonical problems with increasing complexity. The developed framework is validated against direct numerical simulations of deionization shocks in micropore-membrane junctions and concentration polarization in micro- and nanochannel systems. We demonstrate that for thin pores subject to concentration gradients our model consistently captures correct induced osmotic pressure, which is a macroscopic phenomena originally derived from thermodynamic principles but here is naturally predicted through microscopic electrostatic interactions. Moreover, we show that the developed model captures current rectification phenomena in a conical nanopore subject to an axial external electric field. Finally, we provide discussions on examples involving stationary and moving deionization shocks in micropore nanopore T-junctions as well as induced-flow loops when pores of varying sizes are connected in parallel 
650 4 |a Journal Article 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a Mani, Ali  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Langmuir : the ACS journal of surfaces and colloids  |d 1992  |g 33(2017), 25 vom: 27. Juni, Seite 6220-6231  |w (DE-627)NLM098181009  |x 1520-5827  |7 nnns 
773 1 8 |g volume:33  |g year:2017  |g number:25  |g day:27  |g month:06  |g pages:6220-6231 
856 4 0 |u http://dx.doi.org/10.1021/acs.langmuir.7b00591  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_350 
912 |a GBV_ILN_721 
951 |a AR 
952 |d 33  |j 2017  |e 25  |b 27  |c 06  |h 6220-6231