Hierarchical Contour Closure-Based Holistic Salient Object Detection

Most existing salient object detection methods compute the saliency for pixels, patches, or superpixels by contrast. Such fine-grained contrast-based salient object detection methods are stuck with saliency attenuation of the salient object and saliency overestimation of the background when the imag...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 26(2017), 9 vom: 25. Sept., Seite 4537-4552
1. Verfasser: Qing Liu (VerfasserIn)
Weitere Verfasser: Xiaopeng Hong, Beiji Zou, Jie Chen, Zailiang Chen, Guoying Zhao
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM271849355
003 DE-627
005 20231224233618.0
007 cr uuu---uuuuu
008 231224s2017 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2017.2703081  |2 doi 
028 5 2 |a pubmed24n0906.xml 
035 |a (DE-627)NLM271849355 
035 |a (NLM)28500000 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Qing Liu  |e verfasserin  |4 aut 
245 1 0 |a Hierarchical Contour Closure-Based Holistic Salient Object Detection 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 11.12.2018 
500 |a Date Revised 11.12.2018 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Most existing salient object detection methods compute the saliency for pixels, patches, or superpixels by contrast. Such fine-grained contrast-based salient object detection methods are stuck with saliency attenuation of the salient object and saliency overestimation of the background when the image is complicated. To better compute the saliency for complicated images, we propose a hierarchical contour closure-based holistic salient object detection method, in which two saliency cues, i.e., closure completeness and closure reliability, are thoroughly exploited. The former pops out the holistic homogeneous regions bounded by completely closed outer contours, and the latter highlights the holistic homogeneous regions bounded by averagely highly reliable outer contours. Accordingly, we propose two computational schemes to compute the corresponding saliency maps in a hierarchical segmentation space. Finally, we propose a framework to combine the two saliency maps, obtaining the final saliency map. Experimental results on three publicly available datasets show that even each single saliency map is able to reach the state-of-the-art performance. Furthermore, our framework, which combines two saliency maps, outperforms the state of the arts. Additionally, we show that the proposed framework can be easily used to extend existing methods and further improve their performances substantially 
650 4 |a Journal Article 
700 1 |a Xiaopeng Hong  |e verfasserin  |4 aut 
700 1 |a Beiji Zou  |e verfasserin  |4 aut 
700 1 |a Jie Chen  |e verfasserin  |4 aut 
700 1 |a Zailiang Chen  |e verfasserin  |4 aut 
700 1 |a Guoying Zhao  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 26(2017), 9 vom: 25. Sept., Seite 4537-4552  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:26  |g year:2017  |g number:9  |g day:25  |g month:09  |g pages:4537-4552 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2017.2703081  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 26  |j 2017  |e 9  |b 25  |c 09  |h 4537-4552