Ultrahigh Thermal Conductive yet Superflexible Graphene Films
© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
| Veröffentlicht in: | Advanced materials (Deerfield Beach, Fla.). - 1998. - 29(2017), 27 vom: 26. Juli |
|---|---|
| 1. Verfasser: | |
| Weitere Verfasser: | , , , , |
| Format: | Online-Aufsatz |
| Sprache: | English |
| Veröffentlicht: |
2017
|
| Zugriff auf das übergeordnete Werk: | Advanced materials (Deerfield Beach, Fla.) |
| Schlagworte: | Journal Article debris-free graphene oxide defect-free graphene sheets flexible graphene films microfold thermal conductivity |
| Zusammenfassung: | © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Electrical devices generate heat at work. The heat should be transferred away immediately by a thermal manager to keep proper functions, especially for high-frequency apparatuses. Besides high thermal conductivity (K), the thermal manager material requires good foldability for the next generation flexible electronics. Unfortunately, metals have satisfactory ductility but inferior K (≤429 W m-1 K-1 ), and highly thermal-conductive nonmetallic materials are generally brittle. Therefore, fabricating a foldable macroscopic material with a prominent K is still under challenge. This study solves the problem by folding atomic thin graphene into microfolds. The debris-free giant graphene sheets endow graphene film (GF) with a high K of 1940 ± 113 W m-1 K-1 . Simultaneously, the microfolds render GF superflexible with a high fracture elongation up to 16%, enabling it more than 6000 cycles of ultimate folding. The large-area multifunctional GFs can be easily integrated into high-power flexible devices for highly efficient thermal management |
|---|---|
| Beschreibung: | Date Completed 18.07.2018 Date Revised 01.10.2020 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
| ISSN: | 1521-4095 |
| DOI: | 10.1002/adma.201700589 |