Four faces of the interaction between ions and aromatic rings

© 2017 Wiley Periodicals, Inc.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 38(2017), 20 vom: 15. Juli, Seite 1762-1773
1. Verfasser: Papp, Dóra (VerfasserIn)
Weitere Verfasser: Rovó, Petra, Jákli, Imre, Császár, Attila G, Perczel, András
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article Research Support, Non-U.S. Gov't focal-point analysis of interaction energies ion-aromatic-ring interaction natural bond orbital analysis non-covalent interaction
Beschreibung
Zusammenfassung:© 2017 Wiley Periodicals, Inc.
Non-covalent interactions between ions and aromatic rings play an important role in the stabilization of macromolecular complexes; of particular interest are peptides and proteins containing aromatic side chains (Phe, Trp, and Tyr) interacting with negatively (Asp and Glu) and positively (Arg and Lys) charged amino acid residues. The structures of the ion-aromatic-ring complexes are the result of an interaction between the large quadrupole moment of the ring and the charge of the ion. Four attractive interaction types are proposed to be distinguished based on the position of the ion with respect to the plane of the ring: perpendicular cation-π (CP⊥ ), co-planar cation-π (CP∥ ), perpendicular anion-π (AP⊥ ), and co-planar anion-π (AP∥ ). To understand more than the basic features of these four interaction types, a systematic, high-level quantum chemical study is performed, using the X-  + C6 H6 , M+  + C6 H6 , X-  + C6 F6 , and M+  + C6 F6 model systems with X-  = H- , F- , Cl- , HCOO- , CH3 COO- and M+  = H+ , Li+ , Na+ , NH4+, CH3 NH3+, whereby C6 H6 and C6 F6 represent an electron-rich and an electron-deficient π system, respectively. Benchmark-quality interaction energies with small uncertainties, obtained via the so-called focal-point analysis (FPA) technique, are reported for the four interaction types. The computations reveal that the interactions lead to significant stabilization, and that the interaction energy order, given in kcal mol-1 in parentheses, is CP⊥ (23-37) > AP⊥ (14-21) > CP∥ (9-22) > AP∥ (6-16). A natural bond orbital analysis performed leads to a deeper qualitative understanding of the four interaction types. To facilitate the future quantum chemical characterization of ion-aromatic-ring interactions in large biomolecules, the performance of three density functional theory methods, B3LYP, BHandHLYP, and M06-2X, is tested against the FPA benchmarks, with the result that the M06-2X functional performs best. © 2017 Wiley Periodicals, Inc
Beschreibung:Date Revised 20.11.2019
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1096-987X
DOI:10.1002/jcc.24816