End-to-End Comparative Attention Networks for Person Re-Identification

Person re-identification across disjoint camera views has been widely applied in video surveillance yet it is still a challenging problem. One of the major challenges lies in the lack of spatial and temporal cues, which makes it difficult to deal with large variations of lighting conditions, viewing...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 26(2017), 7 vom: 05. Juli, Seite 3492-3506
1. Verfasser: Hao Liu (VerfasserIn)
Weitere Verfasser: Jiashi Feng, Meibin Qi, Jianguo Jiang, Shuicheng Yan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM271604654
003 DE-627
005 20231224233047.0
007 cr uuu---uuuuu
008 231224s2017 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2017.2700762  |2 doi 
028 5 2 |a pubmed24n0905.xml 
035 |a (DE-627)NLM271604654 
035 |a (NLM)28475058 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Hao Liu  |e verfasserin  |4 aut 
245 1 0 |a End-to-End Comparative Attention Networks for Person Re-Identification 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 11.12.2018 
500 |a Date Revised 11.12.2018 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Person re-identification across disjoint camera views has been widely applied in video surveillance yet it is still a challenging problem. One of the major challenges lies in the lack of spatial and temporal cues, which makes it difficult to deal with large variations of lighting conditions, viewing angles, body poses, and occlusions. Recently, several deep-learning-based person re-identification approaches have been proposed and achieved remarkable performance. However, most of those approaches extract discriminative features from the whole frame at one glimpse without differentiating various parts of the persons to identify. It is essentially important to examine multiple highly discriminative local regions of the person images in details through multiple glimpses for dealing with the large appearance variance. In this paper, we propose a new soft attention-based model, i.e., the end-to-end comparative attention network (CAN), specifically tailored for the task of person re-identification. The end-to-end CAN learns to selectively focus on parts of pairs of person images after taking a few glimpses of them and adaptively comparing their appearance. The CAN model is able to learn which parts of images are relevant for discerning persons and automatically integrates information from different parts to determine whether a pair of images belongs to the same person. In other words, our proposed CAN model simulates the human perception process to verify whether two images are from the same person. Extensive experiments on four benchmark person re-identification data sets, including CUHK01, CHUHK03, Market-1501, and VIPeR, clearly demonstrate that our proposed end-to-end CAN for person re-identification outperforms well established baselines significantly and offer the new state-of-the-art performance 
650 4 |a Journal Article 
700 1 |a Jiashi Feng  |e verfasserin  |4 aut 
700 1 |a Meibin Qi  |e verfasserin  |4 aut 
700 1 |a Jianguo Jiang  |e verfasserin  |4 aut 
700 1 |a Shuicheng Yan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 26(2017), 7 vom: 05. Juli, Seite 3492-3506  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:26  |g year:2017  |g number:7  |g day:05  |g month:07  |g pages:3492-3506 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2017.2700762  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 26  |j 2017  |e 7  |b 05  |c 07  |h 3492-3506