In Situ Measurement of Surface Functional Groups on Silica Nanoparticles Using Solvent Relaxation Nuclear Magnetic Resonance
In situ analysis and study on the surface of nanoparticles (NPs) is a key to obtain their important physicochemical properties for the subsequent applications. Of them, most works focus on the qualitative characterization whereas quantitative analysis and measurement on the NPs under their storage a...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1992. - 33(2017), 35 vom: 05. Sept., Seite 8724-8729 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2017
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't |
Zusammenfassung: | In situ analysis and study on the surface of nanoparticles (NPs) is a key to obtain their important physicochemical properties for the subsequent applications. Of them, most works focus on the qualitative characterization whereas quantitative analysis and measurement on the NPs under their storage and usage conditions is still a challenge. In order to cope with this challenge, solvation relaxation-based nuclear magnetic resonance (NMR) technology has been applied to measure the wet specific surface area and, therefore, determine the number of the bound water molecules on the surface of silica NPs in solution and the hydrophilic groups of various types grafted on the surface of the NPs. By changing the surface functional group on silica particles, the fine distinction for the solvent-particle interaction with different surface group can be quantitatively differentiated by measuring the number of water molecules absorbed on the surface. The results show that the number of the surface hydroxyl, amine, and carboxyl group per nm2 is 4.0, 3.7, and 2.3, respectively, for the silica particles with a diameter of 203 nm. The method reported here is the first attempt to determine in situ the number of bound solvent molecules and any solvophilic groups grafted on nanoparticles |
---|---|
Beschreibung: | Date Completed 23.07.2018 Date Revised 23.07.2018 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1520-5827 |
DOI: | 10.1021/acs.langmuir.7b00923 |