|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM271525770 |
003 |
DE-627 |
005 |
20231224232907.0 |
007 |
cr uuu---uuuuu |
008 |
231224s2017 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.201701070
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0905.xml
|
035 |
|
|
|a (DE-627)NLM271525770
|
035 |
|
|
|a (NLM)28466959
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Gao, Aiqin
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Controllable Fabrication of Au Nanocups by Confined-Space Thermal Dewetting for OCT Imaging
|
264 |
|
1 |
|c 2017
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 18.07.2018
|
500 |
|
|
|a Date Revised 01.10.2020
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
|
520 |
|
|
|a Here, this study reports a novel confined-space thermal dewetting strategy for the fabrication of Au nanocups with tunable diameter, height, and size of cup opening. The nanocup morphology is defined by the cup-shaped void space created by a yolk-shell silica template that spontaneously takes an eccentric configuration during annealing. Thermal dewetting of Au, which is sandwiched between the yolk and shell, leads to the desired nanocup morphology. With strong scattering in near infrared, the Au nanocups exhibit superior efficiency as contrast agents for spectral-domain optical coherence tomography imaging. This confined-space thermal dewetting strategy is scalable and general, and can be potentially extended to the synthesis of novel anisotropic nanostructures of various compositions that are difficult to produce by conventional wet chemical or physical methods, thus opening up opportunities for many new applications
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a dewetting
|
650 |
|
4 |
|a gold
|
650 |
|
4 |
|a nanocups
|
650 |
|
4 |
|a optical coherence tomography
|
650 |
|
4 |
|a surface plasmon resonance
|
700 |
1 |
|
|a Xu, Wenjing
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ponce de León, Yenisey
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Bai, Yaocai
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Gong, Mingfu
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Xie, Kongliang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Park, Boris Hyle
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yin, Yadong
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 29(2017), 26 vom: 01. Juli
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:29
|g year:2017
|g number:26
|g day:01
|g month:07
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.201701070
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 29
|j 2017
|e 26
|b 01
|c 07
|