Integrated gasification combined cycle using Egyptian Maghara coal-rice straw feedstock

Rice straw is an agricultural waste that causes an annoying problem in Egypt if it is not well exploited. This study focuses on using this waste in power generation by co-gasification of Egyptian Maghara coal and rice straw blends using entrained flow gasifier technology. Aspen Plus was used to cond...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Waste management & research : the journal of the International Solid Wastes and Public Cleansing Association, ISWA. - 1991. - 35(2017), 6 vom: 15. Juni, Seite 656-668
1. Verfasser: Hegazy, A (VerfasserIn)
Weitere Verfasser: Ghallab, A O, Ashour, F H
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:Waste management & research : the journal of the International Solid Wastes and Public Cleansing Association, ISWA
Schlagworte:Journal Article Integrated gasification combined cycle Maghara coal biomass power generation rice straw syngas Coal Gases Carbon 7440-44-0
Beschreibung
Zusammenfassung:Rice straw is an agricultural waste that causes an annoying problem in Egypt if it is not well exploited. This study focuses on using this waste in power generation by co-gasification of Egyptian Maghara coal and rice straw blends using entrained flow gasifier technology. Aspen Plus was used to conduct a parametric study for investigation of the effect of changing the inputs to the gasifier on the produced gas composition. Three different input parameters, influencing the performance of the gasifier, including the percentage of coal to rice straw in the blend, the fraction of added water to the blend, and the mass percentage of oxygen with respect to the mass of the blend fed to the gasifier were analysed. Two alternative power production schemes (with and without carbon capturing) have been investigated. The obtained optimum feed conditions are: 40% coal in the feed blend, 20% water concentration in the feed slurry, and 80% oxygen with respect to the dry feed blend to the gasifier. For (10 0000 kg per hour) of the feed blend, the power generated was 270.1 MW in the case of non-carbon capturing, while in the case of carbon capturing, 263.52 MW was generated. Although it produces less power, applying carbon capturing techniques means handling less flue gas and thus using smaller gas turbines and results in more environmentally friendly emissions
Beschreibung:Date Completed 04.12.2017
Date Revised 02.12.2018
published: Print-Electronic
Citation Status MEDLINE
ISSN:1096-3669
DOI:10.1177/0734242X17702728