Predicting the Quality of Fused Long Wave Infrared and Visible Light Images

The capability to automatically evaluate the quality of long wave infrared (LWIR) and visible light images has the potential to play an important role in determining and controlling the quality of a resulting fused LWIR-visible light image. Extensive work has been conducted on studying the statistic...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 26(2017), 7 vom: 03. Juli, Seite 3479-3491
1. Verfasser: Moreno-Villamarin, David Eduardo (VerfasserIn)
Weitere Verfasser: Benitez-Restrepo, Hernan Dario, Bovik, Alan Conrad
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:The capability to automatically evaluate the quality of long wave infrared (LWIR) and visible light images has the potential to play an important role in determining and controlling the quality of a resulting fused LWIR-visible light image. Extensive work has been conducted on studying the statistics of natural LWIR and visible images. Nonetheless, there has been little work done on analyzing the statistics of fused LWIR and visible images and associated distortions. In this paper, we analyze five multi-resolution-based image fusion methods in regards to several common distortions, including blur, white noise, JPEG compression, and non-uniformity. We study the natural scene statistics of fused images and how they are affected by these kinds of distortions. Furthermore, we conducted a human study on the subjective quality of pristine and degraded fused LWIR-visible images. We used this new database to create an automatic opinion-distortion-unaware fused image quality model and analyzer algorithm. In the human study, 27 subjects evaluated 750 images over five sessions each. We also propose an opinion-aware fused image quality analyzer, whose relative predictions with respect to other state-of-the-art models correlate better with human perceptual evaluations than competing methods. An implementation of the proposed fused image quality measures can be found at https://github.com/ujemd/NSS-of-LWIR-and-Vissible-Images. Also, the new database can be found at http://bit.ly/2noZlbQ
Beschreibung:Date Completed 11.12.2018
Date Revised 11.12.2018
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1941-0042
DOI:10.1109/TIP.2017.2695898