Part-Based Deep Hashing for Large-Scale Person Re-Identification

Large-scale is a trend in person re-identi- fication (re-id). It is important that real-time search be performed in a large gallery. While previous methods mostly focus on discriminative learning, this paper makes the attempt in integrating deep learning and hashing into one framework to evaluate th...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 26(2017), 10 vom: 03. Okt., Seite 4806-4817
1. Verfasser: Zhu, Fuqing (VerfasserIn)
Weitere Verfasser: Kong, Xiangwei, Zheng, Liang, Fu, Haiyan, Tian, Qi
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM271232617
003 DE-627
005 20231224232254.0
007 cr uuu---uuuuu
008 231224s2017 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2017.2695101  |2 doi 
028 5 2 |a pubmed24n0904.xml 
035 |a (DE-627)NLM271232617 
035 |a (NLM)28436862 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhu, Fuqing  |e verfasserin  |4 aut 
245 1 0 |a Part-Based Deep Hashing for Large-Scale Person Re-Identification 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 30.07.2018 
500 |a Date Revised 30.07.2018 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Large-scale is a trend in person re-identi- fication (re-id). It is important that real-time search be performed in a large gallery. While previous methods mostly focus on discriminative learning, this paper makes the attempt in integrating deep learning and hashing into one framework to evaluate the efficiency and accuracy for large-scale person re-id. We integrate spatial information for discriminative visual representation by partitioning the pedestrian image into horizontal parts. Specifically, Part-based Deep Hashing (PDH) is proposed, in which batches of triplet samples are employed as the input of the deep hashing architecture. Each triplet sample contains two pedestrian images (or parts) with the same identity and one pedestrian image (or part) of the different identity. A triplet loss function is employed with a constraint that the Hamming distance of pedestrian images (or parts) with the same identity is smaller than ones with the different identity. In the experiment, we show that the proposed PDH method yields very competitive re-id accuracy on the large-scale Market-1501 and Market-1501+500K datasets 
650 4 |a Journal Article 
700 1 |a Kong, Xiangwei  |e verfasserin  |4 aut 
700 1 |a Zheng, Liang  |e verfasserin  |4 aut 
700 1 |a Fu, Haiyan  |e verfasserin  |4 aut 
700 1 |a Tian, Qi  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 26(2017), 10 vom: 03. Okt., Seite 4806-4817  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:26  |g year:2017  |g number:10  |g day:03  |g month:10  |g pages:4806-4817 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2017.2695101  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 26  |j 2017  |e 10  |b 03  |c 10  |h 4806-4817