Atomic Interface Engineering and Electric-Field Effect in Ultrathin Bi2 MoO6 Nanosheets for Superior Lithium Ion Storage

© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 29(2017), 26 vom: 30. Juli
1. Verfasser: Zheng, Yang (VerfasserIn)
Weitere Verfasser: Zhou, Tengfei, Zhao, Xudong, Pang, Wei Kong, Gao, Hong, Li, Sean, Zhou, Zhen, Liu, Huakun, Guo, Zaiping
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article Bi2MoO6 atomic interfaces electric field lithium-ion batteries ultrathin sheets
LEADER 01000naa a22002652 4500
001 NLM271230282
003 DE-627
005 20231224232251.0
007 cr uuu---uuuuu
008 231224s2017 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.201700396  |2 doi 
028 5 2 |a pubmed24n0904.xml 
035 |a (DE-627)NLM271230282 
035 |a (NLM)28436610 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zheng, Yang  |e verfasserin  |4 aut 
245 1 0 |a Atomic Interface Engineering and Electric-Field Effect in Ultrathin Bi2 MoO6 Nanosheets for Superior Lithium Ion Storage 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 18.07.2018 
500 |a Date Revised 01.10.2020 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 
520 |a Ultrathin 2D materials can offer promising opportunities for exploring advanced energy storage systems, with satisfactory electrochemical performance. Engineering atomic interfaces by stacking 2D crystals holds huge potential for tuning material properties at the atomic level, owing to the strong layer-layer interactions, enabling unprecedented physical properties. In this work, atomically thin Bi2 MoO6 sheets are acquired that exhibit remarkable high-rate cycling performance in Li-ion batteries, which can be ascribed to the interlayer coupling effect, as well as the 2D configuration and intrinsic structural stability. The unbalanced charge distribution occurs within the crystal and induces built-in electric fields, significantly boosting lithium ion transfer dynamics, while the extra charge transport channels generated on the open surfaces further promote charge transport. The in situ synchrotron X-ray powder diffraction results confirm the material's excellent structural stability. This work provides some insights for designing high-performance electrode materials for energy storage by manipulating the interface interaction and electronic structure 
650 4 |a Journal Article 
650 4 |a Bi2MoO6 
650 4 |a atomic interfaces 
650 4 |a electric field 
650 4 |a lithium-ion batteries 
650 4 |a ultrathin sheets 
700 1 |a Zhou, Tengfei  |e verfasserin  |4 aut 
700 1 |a Zhao, Xudong  |e verfasserin  |4 aut 
700 1 |a Pang, Wei Kong  |e verfasserin  |4 aut 
700 1 |a Gao, Hong  |e verfasserin  |4 aut 
700 1 |a Li, Sean  |e verfasserin  |4 aut 
700 1 |a Zhou, Zhen  |e verfasserin  |4 aut 
700 1 |a Liu, Huakun  |e verfasserin  |4 aut 
700 1 |a Guo, Zaiping  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 29(2017), 26 vom: 30. Juli  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:29  |g year:2017  |g number:26  |g day:30  |g month:07 
856 4 0 |u http://dx.doi.org/10.1002/adma.201700396  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 29  |j 2017  |e 26  |b 30  |c 07