Mapping Energy Levels for Organic Heterojunctions

© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 29(2017), 24 vom: 02. Juni
1. Verfasser: Li, Yiying (VerfasserIn)
Weitere Verfasser: Li, Peicheng, Lu, Zheng-Hong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article energy level alignment molecular orientation organic electronics organic heterojunctions
LEADER 01000naa a22002652 4500
001 NLM271229934
003 DE-627
005 20231224232250.0
007 cr uuu---uuuuu
008 231224s2017 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.201700414  |2 doi 
028 5 2 |a pubmed24n0904.xml 
035 |a (DE-627)NLM271229934 
035 |a (NLM)28436573 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Li, Yiying  |e verfasserin  |4 aut 
245 1 0 |a Mapping Energy Levels for Organic Heterojunctions 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 18.07.2018 
500 |a Date Revised 01.10.2020 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 
520 |a An organic semiconductor thin film is a solid-state matter comprising one or more molecules. For applications in electronics and photonics, several distinct functional organic thin films are stacked together to create a variety of devices such as organic light-emitting diodes and organic solar cells. The energy levels at these thin-film junctions dictate various electronic processes such as the charge transport across these junctions, the exciton dissociation rates at donor-acceptor molecular interfaces, and the charge trapping during exciton formation in a host-dopant system. These electronic processes are vital to a device's performance and functionality. To uncover a general scientific principle in governing the interface energy levels, highest occupied molecular orbitals, and vacuum level dipoles, herein a comprehensive experimental research is conducted on several dozens of organic-organic heterojunctions representative of various device applications. It is found that the experimental data map on interface energy levels, after correcting variables such as molecular orientation-dependent ionization energies, consists of three distinct regions depending on interface fundamental physical parameters such as Fermi energy, work function, highest occupied molecular orbitals, and lowest unoccupied molecular orbitals. This general energy map provides a master guide in selection of new materials for fabricating future generations of organic semiconductor devices 
650 4 |a Journal Article 
650 4 |a energy level alignment 
650 4 |a molecular orientation 
650 4 |a organic electronics 
650 4 |a organic heterojunctions 
700 1 |a Li, Peicheng  |e verfasserin  |4 aut 
700 1 |a Lu, Zheng-Hong  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 29(2017), 24 vom: 02. Juni  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:29  |g year:2017  |g number:24  |g day:02  |g month:06 
856 4 0 |u http://dx.doi.org/10.1002/adma.201700414  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 29  |j 2017  |e 24  |b 02  |c 06