Fast Median Filtering for Phase or Orientation Data

Median filtering is among the most utilized tools for smoothing real-valued data, as it is robust, edge-preserving, value-preserving, and yet can be computed efficiently. For data living on the unit circle, such as phase data or orientation data, a filter with similar properties is desirable. For th...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 40(2018), 3 vom: 19. März, Seite 639-652
1. Verfasser: Storath, Martin (VerfasserIn)
Weitere Verfasser: Weinmann, Andreas
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000caa a22002652c 4500
001 NLM271094303
003 DE-627
005 20250221125408.0
007 cr uuu---uuuuu
008 231224s2018 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2017.2692779  |2 doi 
028 5 2 |a pubmed25n0903.xml 
035 |a (DE-627)NLM271094303 
035 |a (NLM)28422681 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Storath, Martin  |e verfasserin  |4 aut 
245 1 0 |a Fast Median Filtering for Phase or Orientation Data 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 13.02.2019 
500 |a Date Revised 15.02.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Median filtering is among the most utilized tools for smoothing real-valued data, as it is robust, edge-preserving, value-preserving, and yet can be computed efficiently. For data living on the unit circle, such as phase data or orientation data, a filter with similar properties is desirable. For these data, there is no unique means to define a median; so we discuss various possibilities. The arc distance median turns out to be the only variant which leads to robust, edge-preserving and value-preserving smoothing. However, there are no efficient algorithms for filtering based on the arc distance median. Here, we propose fast algorithms for filtering of signals and images with values on the unit circle based on the arc distance median. For non-quantized data, we develop an algorithm that scales linearly with the filter size. The runtime of our reference implementation is only moderately higher than the Matlab implementation of the classical median filter for real-valued data. For quantized data, we obtain an algorithm of constant complexity w.r.t. the filter size. We demonstrate the performance of our algorithms for real life data sets: phase images from interferometric synthetic aperture radar, planar flow fields from optical flow, and time series of wind directions 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Weinmann, Andreas  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 40(2018), 3 vom: 19. März, Seite 639-652  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:40  |g year:2018  |g number:3  |g day:19  |g month:03  |g pages:639-652 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2017.2692779  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 40  |j 2018  |e 3  |b 19  |c 03  |h 639-652