|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM271046228 |
003 |
DE-627 |
005 |
20231224231849.0 |
007 |
cr uuu---uuuuu |
008 |
231224s2017 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.201700814
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0903.xml
|
035 |
|
|
|a (DE-627)NLM271046228
|
035 |
|
|
|a (NLM)28417576
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Lee, Tae Hoon
|e verfasserin
|4 aut
|
245 |
1 |
4 |
|a The Relation between Chemical Bonding and Ultrafast Crystal Growth
|
264 |
|
1 |
|c 2017
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 18.07.2018
|
500 |
|
|
|a Date Revised 01.10.2020
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2017 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
|
520 |
|
|
|a Glasses are often described as supercooled liquids, whose structures are topologically disordered like a liquid, but nevertheless retain short-range structural order. Structural complexity is often associated with complicated electron-charge distributions in glassy systems, making a detailed investigation challenging even for short-range structural order, let alone their atomic dynamics. This is particularly problematic for lone-pair-rich, semiconducting materials, such as phase-change materials (PCMs). Here, this study shows that analytical methods for studying bonding, based on the electron-charge density, rather than a conventional atomic pair-correlation-function approach, allows an in-depth investigation into the chemical-bonding network, as well as lone pairs, of the prototypical PCM, Ge2 Sb2 Te5 (GST). It is demonstrated that the structurally flexible building units of the amorphous GST network, intimately linked to the presence of distinctly coexisting weak covalent and lone-pair interactions, give rise to cooperative structural-ordering processes, by which ultrafast crystal growth becomes possible. This finding may universally apply to other PCMs
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a DFT calculations
|
650 |
|
4 |
|a chemical bonding
|
650 |
|
4 |
|a crystal growth
|
650 |
|
4 |
|a phase-change materials
|
700 |
1 |
|
|a Elliott, Stephen R
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 29(2017), 24 vom: 22. Juni
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:29
|g year:2017
|g number:24
|g day:22
|g month:06
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.201700814
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 29
|j 2017
|e 24
|b 22
|c 06
|