|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM27104537X |
003 |
DE-627 |
005 |
20231224231848.0 |
007 |
cr uuu---uuuuu |
008 |
231224s2017 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.201606042
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0903.xml
|
035 |
|
|
|a (DE-627)NLM27104537X
|
035 |
|
|
|a (NLM)28417487
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Luo, Wei
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Reducing Interfacial Resistance between Garnet-Structured Solid-State Electrolyte and Li-Metal Anode by a Germanium Layer
|
264 |
|
1 |
|c 2017
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 18.07.2018
|
500 |
|
|
|a Date Revised 01.10.2020
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
|
520 |
|
|
|a Substantial efforts are underway to develop all-solid-state Li batteries (SSLiBs) toward high safety, high power density, and high energy density. Garnet-structured solid-state electrolyte exhibits great promise for SSLiBs owing to its high Li-ion conductivity, wide potential window, and sufficient thermal/chemical stability. A major challenge of garnet is that the contact between the garnet and the Li-metal anodes is poor due to the rigidity of the garnet, which leads to limited active sites and large interfacial resistance. This study proposes a new methodology for reducing the garnet/Li-metal interfacial resistance by depositing a thin germanium (Ge) (20 nm) layer on garnet. By applying this approach, the garnet/Li-metal interfacial resistance decreases from ≈900 to ≈115 Ω cm2 due to an alloying reaction between the Li metal and the Ge. In agreement with experiments, first-principles calculation confirms the good stability and improved wetting at the interface between the lithiated Ge layer and garnet. In this way, this unique Ge modification technique enables a stable cycling performance of a full cell of lithium metal, garnet electrolyte, and LiFePO4 cathode at room temperature
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Li-metal anodes
|
650 |
|
4 |
|a first-principles calculations
|
650 |
|
4 |
|a garnet
|
650 |
|
4 |
|a reducing interfacial resistance
|
650 |
|
4 |
|a solid-state electrolytes
|
700 |
1 |
|
|a Gong, Yunhui
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhu, Yizhou
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Li, Yiju
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yao, Yonggang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Ying
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Fu, Kun Kelvin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Pastel, Glenn
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Lin, Chuan-Fu
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Mo, Yifei
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wachsman, Eric D
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Hu, Liangbing
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 29(2017), 22 vom: 20. Juni
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:29
|g year:2017
|g number:22
|g day:20
|g month:06
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.201606042
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 29
|j 2017
|e 22
|b 20
|c 06
|