Materials Genome in Action : Identifying the Performance Limits of Physical Hydrogen Storage

The Materials Genome is in action: the molecular codes for millions of materials have been sequenced, predictive models have been developed, and now the challenge of hydrogen storage is targeted. Renewably generated hydrogen is an attractive transportation fuel with zero carbon emissions, but its st...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Chemistry of materials : a publication of the American Chemical Society. - 1998. - 29(2017), 7 vom: 11. Apr., Seite 2844-2854
1. Verfasser: Thornton, Aaron W (VerfasserIn)
Weitere Verfasser: Simon, Cory M, Kim, Jihan, Kwon, Ohmin, Deeg, Kathryn S, Konstas, Kristina, Pas, Steven J, Hill, Matthew R, Winkler, David A, Haranczyk, Maciej, Smit, Berend
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:Chemistry of materials : a publication of the American Chemical Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM271004150
003 DE-627
005 20231224231756.0
007 cr uuu---uuuuu
008 231224s2017 xx |||||o 00| ||eng c
024 7 |a 10.1021/acs.chemmater.6b04933  |2 doi 
028 5 2 |a pubmed24n0903.xml 
035 |a (DE-627)NLM271004150 
035 |a (NLM)28413259 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Thornton, Aaron W  |e verfasserin  |4 aut 
245 1 0 |a Materials Genome in Action  |b Identifying the Performance Limits of Physical Hydrogen Storage 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 20.11.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a The Materials Genome is in action: the molecular codes for millions of materials have been sequenced, predictive models have been developed, and now the challenge of hydrogen storage is targeted. Renewably generated hydrogen is an attractive transportation fuel with zero carbon emissions, but its storage remains a significant challenge. Nanoporous adsorbents have shown promising physical adsorption of hydrogen approaching targeted capacities, but the scope of studies has remained limited. Here the Nanoporous Materials Genome, containing over 850 000 materials, is analyzed with a variety of computational tools to explore the limits of hydrogen storage. Optimal features that maximize net capacity at room temperature include pore sizes of around 6 Å and void fractions of 0.1, while at cryogenic temperatures pore sizes of 10 Å and void fractions of 0.5 are optimal. Our top candidates are found to be commercially attractive as "cryo-adsorbents", with promising storage capacities at 77 K and 100 bar with 30% enhancement to 40 g/L, a promising alternative to liquefaction at 20 K and compression at 700 bar 
650 4 |a Journal Article 
700 1 |a Simon, Cory M  |e verfasserin  |4 aut 
700 1 |a Kim, Jihan  |e verfasserin  |4 aut 
700 1 |a Kwon, Ohmin  |e verfasserin  |4 aut 
700 1 |a Deeg, Kathryn S  |e verfasserin  |4 aut 
700 1 |a Konstas, Kristina  |e verfasserin  |4 aut 
700 1 |a Pas, Steven J  |e verfasserin  |4 aut 
700 1 |a Hill, Matthew R  |e verfasserin  |4 aut 
700 1 |a Winkler, David A  |e verfasserin  |4 aut 
700 1 |a Haranczyk, Maciej  |e verfasserin  |4 aut 
700 1 |a Smit, Berend  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Chemistry of materials : a publication of the American Chemical Society  |d 1998  |g 29(2017), 7 vom: 11. Apr., Seite 2844-2854  |w (DE-627)NLM098194763  |x 0897-4756  |7 nnns 
773 1 8 |g volume:29  |g year:2017  |g number:7  |g day:11  |g month:04  |g pages:2844-2854 
856 4 0 |u http://dx.doi.org/10.1021/acs.chemmater.6b04933  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_11 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 29  |j 2017  |e 7  |b 11  |c 04  |h 2844-2854