Optimization and characterization of hydrochar produced from microwave hydrothermal carbonization of fish waste
Copyright © 2017 Elsevier Ltd. All rights reserved.
Veröffentlicht in: | Waste management (New York, N.Y.). - 1999. - 65(2017) vom: 25. Juli, Seite 159-168 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2017
|
Zugriff auf das übergeordnete Werk: | Waste management (New York, N.Y.) |
Schlagworte: | Journal Article Fish waste Hydrochar Hydrothermal carbonization Microwave Response surface design Sewage Carbon 7440-44-0 |
Zusammenfassung: | Copyright © 2017 Elsevier Ltd. All rights reserved. Fish processing results in large amounts of solid and liquid wastes that are unsustainably dumped into oceans and landfills. Alternative sustainable technologies that completely utilize seafood wastes are needed. Hydrothermal carbonization (HTC) that converts moisture-rich biomass into hydrochar is mostly employed for pure lignocellulosic biowaste. However, the suitability of HTC for pure non-lignocellulosic waste is unknown. Here, for the first time, a response surface design guided optimization of microwave hydrothermal carbonization (MHTC) process parameters, holding temperature (150-210°C) and time (90-120min), showed that a temperature of approximately 200°C and a time of approximately 119min yielded maximal hydrochar (∼34%). The atomic carbon and ash content, and calorific value of hydrochar were approximately 25-57%, 20-28%, and 19-24.5MJ/kg respectively, depending on the MHTC operating conditions. Taken together, these results confirm that MHTC produces hydrochar from fish waste of quality comparable to one produced from certain lignocellulosic, sewage and municipal wastes. Therefore, this strategy presents an exciting alternative technology that can be used either independently or in combination with other valorization techniques to completely utilize fish wastes irrespective of their quality |
---|---|
Beschreibung: | Date Completed 13.12.2017 Date Revised 02.12.2018 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1879-2456 |
DOI: | 10.1016/j.wasman.2017.04.016 |