Facial Expression Recognition Based on Deep Evolutional Spatial-Temporal Networks

One key challenging issue of facial expression recognition is to capture the dynamic variation of facial physical structure from videos. In this paper, we propose a part-based hierarchical bidirectional recurrent neural network (PHRNN) to analyze the facial expression information of temporal sequenc...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 26(2017), 9 vom: 15. Sept., Seite 4193-4203
1. Verfasser: Zhang, Kaihao (VerfasserIn)
Weitere Verfasser: Huang, Yongzhen, Du, Yong, Wang, Liang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM270599444
003 DE-627
005 20231224230917.0
007 cr uuu---uuuuu
008 231224s2017 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2017.2689999  |2 doi 
028 5 2 |a pubmed24n0902.xml 
035 |a (DE-627)NLM270599444 
035 |a (NLM)28371777 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhang, Kaihao  |e verfasserin  |4 aut 
245 1 0 |a Facial Expression Recognition Based on Deep Evolutional Spatial-Temporal Networks 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 30.07.2018 
500 |a Date Revised 30.07.2018 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a One key challenging issue of facial expression recognition is to capture the dynamic variation of facial physical structure from videos. In this paper, we propose a part-based hierarchical bidirectional recurrent neural network (PHRNN) to analyze the facial expression information of temporal sequences. Our PHRNN models facial morphological variations and dynamical evolution of expressions, which is effective to extract "temporal features" based on facial landmarks (geometry information) from consecutive frames. Meanwhile, in order to complement the still appearance information, a multi-signal convolutional neural network (MSCNN) is proposed to extract "spatial features" from still frames. We use both recognition and verification signals as supervision to calculate different loss functions, which are helpful to increase the variations of different expressions and reduce the differences among identical expressions. This deep evolutional spatial-temporal network (composed of PHRNN and MSCNN) extracts the partial-whole, geometry-appearance, and dynamic-still information, effectively boosting the performance of facial expression recognition. Experimental results show that this method largely outperforms the state-of-the-art ones. On three widely used facial expression databases (CK+, Oulu-CASIA, and MMI), our method reduces the error rates of the previous best ones by 45.5%, 25.8%, and 24.4%, respectively 
650 4 |a Journal Article 
700 1 |a Huang, Yongzhen  |e verfasserin  |4 aut 
700 1 |a Du, Yong  |e verfasserin  |4 aut 
700 1 |a Wang, Liang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 26(2017), 9 vom: 15. Sept., Seite 4193-4203  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:26  |g year:2017  |g number:9  |g day:15  |g month:09  |g pages:4193-4203 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2017.2689999  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 26  |j 2017  |e 9  |b 15  |c 09  |h 4193-4203