Molecular Engineering with Organic Carbonyl Electrode Materials for Advanced Stationary and Redox Flow Rechargeable Batteries

© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Détails bibliographiques
Publié dans:Advanced materials (Deerfield Beach, Fla.). - 1998. - 29(2017), 48 vom: 06. Dez.
Auteur principal: Zhao, Qing (Auteur)
Autres auteurs: Zhu, Zhiqiang, Chen, Jun
Format: Article en ligne
Langue:English
Publié: 2017
Accès à la collection:Advanced materials (Deerfield Beach, Fla.)
Sujets:Journal Article Review molecular engineering organic carbonyl materials precise design redox flow batteries stationary batteries
LEADER 01000caa a22002652c 4500
001 NLM27058997X
003 DE-627
005 20250221111224.0
007 cr uuu---uuuuu
008 231224s2017 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.201607007  |2 doi 
028 5 2 |a pubmed25n0901.xml 
035 |a (DE-627)NLM27058997X 
035 |a (NLM)28370809 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhao, Qing  |e verfasserin  |4 aut 
245 1 0 |a Molecular Engineering with Organic Carbonyl Electrode Materials for Advanced Stationary and Redox Flow Rechargeable Batteries 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 18.07.2018 
500 |a Date Revised 30.09.2020 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 
520 |a Organic carbonyl electrode materials that have the advantages of high capacity, low cost and being environmentally friendly, are regarded as powerful candidates for next-generation stationary and redox flow rechargeable batteries (RFBs). However, low carbonyl utilization, poor electronic conductivity and undesired dissolution in electrolyte are urgent issues to be solved. Here, we summarize a molecular engineering approach for tuning the capacity, working potential, concentration of active species, kinetics, and stability of stationary and redox flow batteries, which well resolves the problems of organic carbonyl electrode materials. As an example, in stationary batteries, 9,10-anthraquinone (AQ) with two carbonyls delivers a capacity of 257 mAh g-1 (2.27 V vs Li+ /Li), while increasing the number of carbonyls to four with the formation of 5,7,12,14-pentacenetetrone results in a higher capacity of 317 mAh g-1 (2.60 V vs Li+ /Li). In RFBs, AQ, which is less soluble in aqueous electrolyte, reaches 1 M by grafting -SO3 H with the formation of 9,10-anthraquinone-2,7-disulphonic acid, resulting in a power density exceeding 0.6 W cm-2 with long cycling life. Therefore, through regulating substituent groups, conjugated structures, Coulomb interactions, and the molecular weight, the electrochemical performance of carbonyl electrode materials can be rationally optimized. This review offers fundamental principles and insight into designing advanced carbonyl materials for the electrodes of next-generation rechargeable batteries 
650 4 |a Journal Article 
650 4 |a Review 
650 4 |a molecular engineering 
650 4 |a organic carbonyl materials 
650 4 |a precise design 
650 4 |a redox flow batteries 
650 4 |a stationary batteries 
700 1 |a Zhu, Zhiqiang  |e verfasserin  |4 aut 
700 1 |a Chen, Jun  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 29(2017), 48 vom: 06. Dez.  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnas 
773 1 8 |g volume:29  |g year:2017  |g number:48  |g day:06  |g month:12 
856 4 0 |u http://dx.doi.org/10.1002/adma.201607007  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 29  |j 2017  |e 48  |b 06  |c 12