Patterns of stress response and tolerance based on transcriptome profiling of rice crown tissue under zinc deficiency

© The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissionsoup.com.

Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental botany. - 1985. - 68(2017), 7 vom: 01. März, Seite 1715-1729
1. Verfasser: Nanda, Amrit K (VerfasserIn)
Weitere Verfasser: Pujol, Vincent, Wissuwa, Matthias
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:Journal of experimental botany
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Crown RNA-seq deficiency rice starch transporters zinc. Zinc J41CSQ7QDS
Beschreibung
Zusammenfassung:© The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissionsoup.com.
Zinc (Zn) deficiency is the most prevalent micronutrient disorder in rice and leads to delayed development and decreased yield. Several studies have investigated how rice plants respond to Zn deficiency and examined the differences between Zn-efficient (ZE) and Zn-inefficient (ZI) genotypes. ZE genotypes reallocate more Zn to roots and are better at maintaining crown root development than ZI genotypes in response to Zn deficiency. However, little is known about the molecular mechanisms controlling these differences. Moreover, the role of the crown, the part of the stem from which crown roots emerge, has yet to be examined. In this study we highlight the molecular mechanisms triggered by early Zn deficiency in crown tissue through RNA sequencing of two contrasting groups of several ZE and ZI genotypes. This method allowed us to (i) identify several novel and well-known Zn transporters involved in Zn retranslocation from the crown to the shoot and roots in response to Zn deficiency; (ii) determine that Zn deficiency triggers the conversion of soluble sugars into starch; and (iii) detect several candidate genes possibly conferring Zn efficiency, including a monosaccharide transporter, a Zn finger domain-containing protein, a gibberellin-stimulated family protein and a plasma membrane polypeptide family protein
Beschreibung:Date Completed 18.07.2018
Date Revised 31.07.2018
published: Print
Citation Status MEDLINE
ISSN:1460-2431
DOI:10.1093/jxb/erx039