Drawing Large Graphs by Multilevel Maxent-Stress Optimization

Drawing large graphs appropriately is an important step for the visual analysis of data from real-world networks. Here we present a novel multilevel algorithm to compute a graph layout with respect to the maxent-stress metric proposed by Gansner et al. (2013) that combines layout stress and entropy....

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 24(2018), 5 vom: 03. Mai, Seite 1814-1827
1. Verfasser: Meyerhenke, Henning (VerfasserIn)
Weitere Verfasser: Nollenburg, Martin, Schulz, Christian
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM270570357
003 DE-627
005 20231224230836.0
007 cr uuu---uuuuu
008 231224s2018 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2017.2689016  |2 doi 
028 5 2 |a pubmed24n0901.xml 
035 |a (DE-627)NLM270570357 
035 |a (NLM)28368821 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Meyerhenke, Henning  |e verfasserin  |4 aut 
245 1 0 |a Drawing Large Graphs by Multilevel Maxent-Stress Optimization 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 19.03.2019 
500 |a Date Revised 19.03.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Drawing large graphs appropriately is an important step for the visual analysis of data from real-world networks. Here we present a novel multilevel algorithm to compute a graph layout with respect to the maxent-stress metric proposed by Gansner et al. (2013) that combines layout stress and entropy. As opposed to previous work, we do not solve the resulting linear systems of the maxent-stress metric with a typical numerical solver. Instead we use a simple local iterative scheme within a multilevel approach. To accelerate local optimization, we approximate long-range forces and use shared-memory parallelism. Our experiments validate the high potential of our approach, which is particularly appealing for dynamic graphs. In comparison to the previously best maxent-stress optimizer, which is sequential, our parallel implementation is on average 30 times faster already for static graphs (and still faster if executed on a single thread) while producing a comparable solution quality 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Nollenburg, Martin  |e verfasserin  |4 aut 
700 1 |a Schulz, Christian  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 24(2018), 5 vom: 03. Mai, Seite 1814-1827  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:24  |g year:2018  |g number:5  |g day:03  |g month:05  |g pages:1814-1827 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2017.2689016  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 24  |j 2018  |e 5  |b 03  |c 05  |h 1814-1827