Multi-Target Regression via Robust Low-Rank Learning

Multi-target regression has recently regained great popularity due to its capability of simultaneously learning multiple relevant regression tasks and its wide applications in data mining, computer vision and medical image analysis, while great challenges arise from jointly handling inter-target cor...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 40(2018), 2 vom: 03. Feb., Seite 497-504
1. Verfasser: Zhen, Xiantong (VerfasserIn)
Weitere Verfasser: Yu, Mengyang, He, Xiaofei, Li, Shuo
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM270570268
003 DE-627
005 20231224230835.0
007 cr uuu---uuuuu
008 231224s2018 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2017.2688363  |2 doi 
028 5 2 |a pubmed24n0901.xml 
035 |a (DE-627)NLM270570268 
035 |a (NLM)28368816 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhen, Xiantong  |e verfasserin  |4 aut 
245 1 0 |a Multi-Target Regression via Robust Low-Rank Learning 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 30.01.2019 
500 |a Date Revised 30.01.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Multi-target regression has recently regained great popularity due to its capability of simultaneously learning multiple relevant regression tasks and its wide applications in data mining, computer vision and medical image analysis, while great challenges arise from jointly handling inter-target correlations and input-output relationships. In this paper, we propose Multi-layer Multi-target Regression (MMR) which enables simultaneously modeling intrinsic inter-target correlations and nonlinear input-output relationships in a general framework via robust low-rank learning. Specifically, the MMR can explicitly encode inter-target correlations in a structure matrix by matrix elastic nets (MEN); the MMR can work in conjunction with the kernel trick to effectively disentangle highly complex nonlinear input-output relationships; the MMR can be efficiently solved by a new alternating optimization algorithm with guaranteed convergence. The MMR leverages the strength of kernel methods for nonlinear feature learning and the structural advantage of multi-layer learning architectures for inter-target correlation modeling. More importantly, it offers a new multi-layer learning paradigm for multi-target regression which is endowed with high generality, flexibility and expressive ability. Extensive experimental evaluation on 18 diverse real-world datasets demonstrates that our MMR can achieve consistently high performance and outperforms representative state-of-the-art algorithms, which shows its great effectiveness and generality for multivariate prediction 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Yu, Mengyang  |e verfasserin  |4 aut 
700 1 |a He, Xiaofei  |e verfasserin  |4 aut 
700 1 |a Li, Shuo  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 40(2018), 2 vom: 03. Feb., Seite 497-504  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:40  |g year:2018  |g number:2  |g day:03  |g month:02  |g pages:497-504 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2017.2688363  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 40  |j 2018  |e 2  |b 03  |c 02  |h 497-504