Feature Selection Based on High Dimensional Model Representation for Hyperspectral Images

In hyperspectral image analysis, the classification task has generally been addressed jointly with dimensionality reduction due to both the high correlation between the spectral features and the noise present in spectral bands, which might significantly degrade classification performance. In supervi...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 26(2017), 6 vom: 30. Juni, Seite 2918-2928
1. Verfasser: Taskin, Gulsen (VerfasserIn)
Weitere Verfasser: Kaya, Huseyin, Bruzzone, Lorenzo
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM270470573
003 DE-627
005 20231224230626.0
007 cr uuu---uuuuu
008 231224s2017 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2017.2687128  |2 doi 
028 5 2 |a pubmed24n0901.xml 
035 |a (DE-627)NLM270470573 
035 |a (NLM)28358688 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Taskin, Gulsen  |e verfasserin  |4 aut 
245 1 0 |a Feature Selection Based on High Dimensional Model Representation for Hyperspectral Images 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 11.12.2018 
500 |a Date Revised 11.12.2018 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In hyperspectral image analysis, the classification task has generally been addressed jointly with dimensionality reduction due to both the high correlation between the spectral features and the noise present in spectral bands, which might significantly degrade classification performance. In supervised classification, limited training instances in proportion with the number of spectral features have negative impacts on the classification accuracy, which is known as Hughes effects or curse of dimensionality in the literature. In this paper, we focus on dimensionality reduction problem, and propose a novel feature-selection algorithm, which is based on the method called high dimensional model representation. The proposed algorithm is tested on some toy examples and hyperspectral datasets in comparison with conventional feature-selection algorithms in terms of classification accuracy, stability of the selected features and computational time. The results show that the proposed approach provides both high classification accuracy and robust features with a satisfactory computational time 
650 4 |a Journal Article 
700 1 |a Kaya, Huseyin  |e verfasserin  |4 aut 
700 1 |a Bruzzone, Lorenzo  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 26(2017), 6 vom: 30. Juni, Seite 2918-2928  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:26  |g year:2017  |g number:6  |g day:30  |g month:06  |g pages:2918-2928 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2017.2687128  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 26  |j 2017  |e 6  |b 30  |c 06  |h 2918-2928