Stable Superwetting Meshes for On-Demand Separation of Immiscible Oil/Water Mixtures and Emulsions

Oil-water separation is of great importance for the treatment of oily wastewater, including immiscible light/heavy oil-water mixtures, oil-in-water, or water-in-oil emulsions. Recently, interfacial materials (especially filtration membranes) with special wettability have been broadly developed to so...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 33(2017), 15 vom: 18. Apr., Seite 3702-3710
1. Verfasser: Liu, Mingming (VerfasserIn)
Weitere Verfasser: Hou, Yuanyuan, Li, Jing, Guo, Zhiguang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
Beschreibung
Zusammenfassung:Oil-water separation is of great importance for the treatment of oily wastewater, including immiscible light/heavy oil-water mixtures, oil-in-water, or water-in-oil emulsions. Recently, interfacial materials (especially filtration membranes) with special wettability have been broadly developed to solve the environmental problems by virtue of their advantages in energy saving, high flux, and good selectivity. However, the given wetting property (superhydrophilicity or superhydrophobicity) and pore size and poor stability of filtration membranes limit their widespread applications, which is far from meeting a wide variety of oil-polluted water. Here polypyrrole-coated meshes with underwater superoleophobicity and underoil superhydrophobicity as well as controllable pore size were prepared by adopting cyclic voltammetry. It is found that the surface micro/nanohierarchical structures play a critical role in the formation of underwater superoleophobicity and underoil superhydrophobicity. HCl is advantageous to the construction of highly rough surface rather than H2SO4 and H3PO4. The obtained filtration membranes can be used for the on-demand separation of oil-water mixtures, showing outstanding stability in harsh conditions, such as high temperature (80 °C), low temperature (0 °C), salt (0.5 M NaCl), and acid (1 M HCl), except for alkali (1 M NaOH)
Beschreibung:Date Completed 06.07.2018
Date Revised 06.07.2018
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.7b00658