GPU accelerated implementation of NCI calculations using promolecular density

© 2017 Wiley Periodicals, Inc.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 38(2017), 14 vom: 30. Mai, Seite 1071-1083
1. Verfasser: Rubez, Gaëtan (VerfasserIn)
Weitere Verfasser: Etancelin, Jean-Matthieu, Vigouroux, Xavier, Krajecki, Michael, Boisson, Jean-Charles, Hénon, Eric
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article Research Support, Non-U.S. Gov't CUDA NCI electron density graphics processing unit high performance computing noncovalent interactions
LEADER 01000naa a22002652 4500
001 NLM27030908X
003 DE-627
005 20231224230301.0
007 cr uuu---uuuuu
008 231224s2017 xx |||||o 00| ||eng c
024 7 |a 10.1002/jcc.24786  |2 doi 
028 5 2 |a pubmed24n0901.xml 
035 |a (DE-627)NLM27030908X 
035 |a (NLM)28342203 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Rubez, Gaëtan  |e verfasserin  |4 aut 
245 1 0 |a GPU accelerated implementation of NCI calculations using promolecular density 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 20.11.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2017 Wiley Periodicals, Inc. 
520 |a The NCI approach is a modern tool to reveal chemical noncovalent interactions. It is particularly attractive to describe ligand-protein binding. A custom implementation for NCI using promolecular density is presented. It is designed to leverage the computational power of NVIDIA graphics processing unit (GPU) accelerators through the CUDA programming model. The code performances of three versions are examined on a test set of 144 systems. NCI calculations are particularly well suited to the GPU architecture, which reduces drastically the computational time. On a single compute node, the dual-GPU version leads to a 39-fold improvement for the biggest instance compared to the optimal OpenMP parallel run (C code, icc compiler) with 16 CPU cores. Energy consumption measurements carried out on both CPU and GPU NCI tests show that the GPU approach provides substantial energy savings. © 2017 Wiley Periodicals, Inc 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a CUDA 
650 4 |a NCI 
650 4 |a electron density 
650 4 |a graphics processing unit 
650 4 |a high performance computing 
650 4 |a noncovalent interactions 
700 1 |a Etancelin, Jean-Matthieu  |e verfasserin  |4 aut 
700 1 |a Vigouroux, Xavier  |e verfasserin  |4 aut 
700 1 |a Krajecki, Michael  |e verfasserin  |4 aut 
700 1 |a Boisson, Jean-Charles  |e verfasserin  |4 aut 
700 1 |a Hénon, Eric  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 38(2017), 14 vom: 30. Mai, Seite 1071-1083  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnns 
773 1 8 |g volume:38  |g year:2017  |g number:14  |g day:30  |g month:05  |g pages:1071-1083 
856 4 0 |u http://dx.doi.org/10.1002/jcc.24786  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 38  |j 2017  |e 14  |b 30  |c 05  |h 1071-1083