Multi-Scale Multi-Feature Context Modeling for Scene Recognition in the Semantic Manifold

Before the big data era, scene recognition was often approached with two-step inference using localized intermediate representations (objects, topics, and so on). One of such approaches is the semantic manifold (SM), in which patches and images are modeled as points in a semantic probability simplex...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 26(2017), 6 vom: 16. Juni, Seite 2721-2735
1. Verfasser: Song, Xinhang (VerfasserIn)
Weitere Verfasser: Jiang, Shuqiang, Herranz, Luis
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM270227245
003 DE-627
005 20231224230111.0
007 cr uuu---uuuuu
008 231224s2017 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2017.2686017  |2 doi 
028 5 2 |a pubmed24n0900.xml 
035 |a (DE-627)NLM270227245 
035 |a (NLM)28333637 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Song, Xinhang  |e verfasserin  |4 aut 
245 1 0 |a Multi-Scale Multi-Feature Context Modeling for Scene Recognition in the Semantic Manifold 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 30.07.2018 
500 |a Date Revised 30.07.2018 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Before the big data era, scene recognition was often approached with two-step inference using localized intermediate representations (objects, topics, and so on). One of such approaches is the semantic manifold (SM), in which patches and images are modeled as points in a semantic probability simplex. Patch models are learned resorting to weak supervision via image labels, which leads to the problem of scene categories co-occurring in this semantic space. Fortunately, each category has its own co-occurrence patterns that are consistent across the images in that category. Thus, discovering and modeling these patterns are critical to improve the recognition performance in this representation. Since the emergence of large data sets, such as ImageNet and Places, these approaches have been relegated in favor of the much more powerful convolutional neural networks (CNNs), which can automatically learn multi-layered representations from the data. In this paper, we address many limitations of the original SM approach and related works. We propose discriminative patch representations using neural networks and further propose a hybrid architecture in which the semantic manifold is built on top of multiscale CNNs. Both representations can be computed significantly faster than the Gaussian mixture models of the original SM. To combine multiple scales, spatial relations, and multiple features, we formulate rich context models using Markov random fields. To solve the optimization problem, we analyze global and local approaches, where a top-down hierarchical algorithm has the best performance. Experimental results show that exploiting different types of contextual relations jointly consistently improves the recognition accuracy 
650 4 |a Journal Article 
700 1 |a Jiang, Shuqiang  |e verfasserin  |4 aut 
700 1 |a Herranz, Luis  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 26(2017), 6 vom: 16. Juni, Seite 2721-2735  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:26  |g year:2017  |g number:6  |g day:16  |g month:06  |g pages:2721-2735 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2017.2686017  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 26  |j 2017  |e 6  |b 16  |c 06  |h 2721-2735