Ramp-Reversal Memory and Phase-Boundary Scarring in Transition Metal Oxides

© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 29(2017), 21 vom: 18. Juni
1. Verfasser: Vardi, Naor (VerfasserIn)
Weitere Verfasser: Anouchi, Elihu, Yamin, Tony, Middey, Srimanta, Kareev, Michael, Chakhalian, Jak, Dubi, Yonatan, Sharoni, Amos
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article emergent phenomena memory devices metal insulator transition transition metal oxides transport properties
LEADER 01000naa a22002652 4500
001 NLM270214356
003 DE-627
005 20231224230055.0
007 cr uuu---uuuuu
008 231224s2017 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.201605029  |2 doi 
028 5 2 |a pubmed24n0900.xml 
035 |a (DE-627)NLM270214356 
035 |a (NLM)28332323 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Vardi, Naor  |e verfasserin  |4 aut 
245 1 0 |a Ramp-Reversal Memory and Phase-Boundary Scarring in Transition Metal Oxides 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 18.07.2018 
500 |a Date Revised 01.10.2020 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 
520 |a Transition metal oxides are complex electronic systems that exhibit a multitude of collective phenomena. Two archetypal examples are VO2 and NdNiO3 , which undergo a metal-insulator phase transition (MIT), the origin of which is still under debate. Here this study reports the discovery of a memory effect in both systems, manifested through an increase of resistance at a specific temperature, which is set by reversing the temperature ramp from heating to cooling during the MIT. The characteristics of this ramp-reversal memory effect do not coincide with any previously reported history or memory effects in manganites, electron-glass or magnetic systems. From a broad range of experimental features, supported by theoretical modelling, it is found that the main ingredients for the effect to arise are the spatial phase separation of metallic and insulating regions during the MIT and the coupling of lattice strain to the local transition temperature of the phase transition. We conclude that the emergent memory effect originates from phase boundaries at the reversal temperature leaving "scars" in the underlying lattice structure, giving rise to a local increase in the transition temperature. The universality and robustness of the effect shed new light on the MIT in complex oxides 
650 4 |a Journal Article 
650 4 |a emergent phenomena 
650 4 |a memory devices 
650 4 |a metal insulator transition 
650 4 |a transition metal oxides 
650 4 |a transport properties 
700 1 |a Anouchi, Elihu  |e verfasserin  |4 aut 
700 1 |a Yamin, Tony  |e verfasserin  |4 aut 
700 1 |a Middey, Srimanta  |e verfasserin  |4 aut 
700 1 |a Kareev, Michael  |e verfasserin  |4 aut 
700 1 |a Chakhalian, Jak  |e verfasserin  |4 aut 
700 1 |a Dubi, Yonatan  |e verfasserin  |4 aut 
700 1 |a Sharoni, Amos  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 29(2017), 21 vom: 18. Juni  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:29  |g year:2017  |g number:21  |g day:18  |g month:06 
856 4 0 |u http://dx.doi.org/10.1002/adma.201605029  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 29  |j 2017  |e 21  |b 18  |c 06