Numerical interpretation of molecular surface field in dielectric modeling of solvation

© 2017 Wiley Periodicals, Inc.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 38(2017), 14 vom: 30. Mai, Seite 1057-1070
1. Verfasser: Wang, Changhao (VerfasserIn)
Weitere Verfasser: Xiao, Li, Luo, Ray
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article Research Support, N.I.H., Extramural Continuum Solvent Poisson-Boltzmann equation dielectric boundary force molecular surface Solvents
LEADER 01000caa a22002652 4500
001 NLM270077987
003 DE-627
005 20240326233139.0
007 cr uuu---uuuuu
008 231224s2017 xx |||||o 00| ||eng c
024 7 |a 10.1002/jcc.24782  |2 doi 
028 5 2 |a pubmed24n1348.xml 
035 |a (DE-627)NLM270077987 
035 |a (NLM)28318096 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, Changhao  |e verfasserin  |4 aut 
245 1 0 |a Numerical interpretation of molecular surface field in dielectric modeling of solvation 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 07.05.2019 
500 |a Date Revised 26.03.2024 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2017 Wiley Periodicals, Inc. 
520 |a Continuum solvent models, particularly those based on the Poisson-Boltzmann equation (PBE), are widely used in the studies of biomolecular structures and functions. Existing PBE developments have been mainly focused on how to obtain more accurate and/or more efficient numerical potentials and energies. However to adopt the PBE models for molecular dynamics simulations, a difficulty is how to interpret dielectric boundary forces accurately and efficiently for robust dynamics simulations. This study documents the implementation and analysis of a range of standard fitting schemes, including both one-sided and two-sided methods with both first-order and second-order Taylor expansions, to calculate molecular surface electric fields to facilitate the numerical calculation of dielectric boundary forces. These efforts prompted us to develop an efficient approximated one-dimensional method, which is to fit the surface field one dimension at a time, for biomolecular applications without much compromise in accuracy. We also developed a surface-to-atom force partition scheme given a level set representation of analytical molecular surfaces to facilitate their applications to molecular simulations. Testing of these fitting methods in the dielectric boundary force calculations shows that the second-order methods, including the one-dimensional method, consistently perform among the best in the molecular test cases. Finally, the timing analysis shows the approximated one-dimensional method is far more efficient than standard second-order methods in the PBE force calculations. © 2017 Wiley Periodicals, Inc 
650 4 |a Journal Article 
650 4 |a Research Support, N.I.H., Extramural 
650 4 |a Continuum Solvent 
650 4 |a Poisson-Boltzmann equation 
650 4 |a dielectric boundary force 
650 4 |a molecular surface 
650 7 |a Solvents  |2 NLM 
700 1 |a Xiao, Li  |e verfasserin  |4 aut 
700 1 |a Luo, Ray  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 38(2017), 14 vom: 30. Mai, Seite 1057-1070  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnns 
773 1 8 |g volume:38  |g year:2017  |g number:14  |g day:30  |g month:05  |g pages:1057-1070 
856 4 0 |u http://dx.doi.org/10.1002/jcc.24782  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 38  |j 2017  |e 14  |b 30  |c 05  |h 1057-1070