Soil parent material-A major driver of plant nutrient limitations in terrestrial ecosystems

© 2017 John Wiley & Sons Ltd.

Bibliographische Detailangaben
Veröffentlicht in:Global change biology. - 1999. - 23(2017), 9 vom: 15. Sept., Seite 3808-3824
1. Verfasser: Augusto, Laurent (VerfasserIn)
Weitere Verfasser: Achat, David L, Jonard, Mathieu, Vidal, David, Ringeval, Bruno
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:Global change biology
Schlagworte:Journal Article atmospheric deposition bedrock bioavailability nitrogen limitation phosphorus limitation plant growth Soil Phosphorus 27YLU75U4W mehr... Nitrogen N762921K75
Beschreibung
Zusammenfassung:© 2017 John Wiley & Sons Ltd.
Because the capability of terrestrial ecosystems to fix carbon is constrained by nutrient availability, understanding how nutrients limit plant growth is a key contemporary question. However, what drives nutrient limitations at global scale remains to be clarified. Using global data on plant growth, plant nutritive status, and soil fertility, we investigated to which extent soil parent materials explain nutrient limitations. We found that N limitation was not linked to soil parent materials, but was best explained by climate: ecosystems under harsh (i.e., cold and or dry) climates were more N-limited than ecosystems under more favourable climates. Contrary to N limitation, P limitation was not driven by climate, but by soil parent materials. The influence of soil parent materials was the result of the tight link between actual P pools of soils and physical-chemical properties (acidity, P richness) of soil parent materials. Some other ground-related factors (i.e., soil weathering stage, landform) had a noticeable influence on P limitation, but their role appeared to be relatively smaller than that of geology. The relative importance of N limitation versus P limitation was explained by a combination of climate and soil parent material: at global scale, N limitation became prominent with increasing climatic constraints, but this global trend was modulated at lower scales by the effect of parent materials on P limitation, particularly under climates favourable to biological activity. As compared with soil parent materials, atmospheric deposition had only a weak influence on the global distribution of actual nutrient limitation. Our work advances our understanding of the distribution of nutrient limitation at global scale. In particular, it stresses the need to take soil parent materials into account when investigating plant growth response to environment changes
Beschreibung:Date Completed 23.10.2017
Date Revised 02.12.2018
published: Print-Electronic
Citation Status MEDLINE
ISSN:1365-2486
DOI:10.1111/gcb.13691