Understanding the Electrochemical Formation and Decomposition of Li2O2 and LiOH with Operando X-ray Diffraction

The lithium air, or Li-O2, battery system is a promising electrochemical energy storage system because of its very high theoretical specific energy, as required by automotive applications. Fundamental research has resulted in much progress in mitigating detrimental (electro)chemical processes; howev...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Chemistry of materials : a publication of the American Chemical Society. - 1998. - 29(2017), 4 vom: 28. Feb., Seite 1577-1586
1. Verfasser: Li, Zhaolong (VerfasserIn)
Weitere Verfasser: Ganapathy, Swapna, Xu, Yaolin, Heringa, Jouke R, Zhu, Quanyao, Chen, Wen, Wagemaker, Marnix
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:Chemistry of materials : a publication of the American Chemical Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM270060820
003 DE-627
005 20231224225736.0
007 cr uuu---uuuuu
008 231224s2017 xx |||||o 00| ||eng c
024 7 |a 10.1021/acs.chemmater.6b04370  |2 doi 
028 5 2 |a pubmed24n0900.xml 
035 |a (DE-627)NLM270060820 
035 |a (NLM)28316369 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Li, Zhaolong  |e verfasserin  |4 aut 
245 1 0 |a Understanding the Electrochemical Formation and Decomposition of Li2O2 and LiOH with Operando X-ray Diffraction 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 31.01.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a The lithium air, or Li-O2, battery system is a promising electrochemical energy storage system because of its very high theoretical specific energy, as required by automotive applications. Fundamental research has resulted in much progress in mitigating detrimental (electro)chemical processes; however, the detailed structural evolution of the crystalline Li2O2 and LiOH discharge products, held at least partially responsible for the limited reversibility and poor rate performance, is hard to measure operando under realistic electrochemical conditions. This study uses Rietveld refinement of operando X-ray diffraction data during a complete discharge-charge cycle to reveal the detailed structural evolution of Li2O2 and LiOH crystallites in 1,2-dimethoxyethane (DME) and DME/LiI electrolytes, respectively. The anisotropic broadened reflections confirm and quantify the platelet crystallite shape of Li2O2 and LiOH and show how the average crystallite shape evolves during discharge and charge. Li2O2 is shown to form via a nucleation and growth mechanism, whereas the decomposition appears to start at the smallest Li2O2 crystallite sizes because of their larger exposed surface. In the presence of LiI, platelet LiOH crystallites are formed by a particle-by-particle nucleation and growth process, and at the end of discharge, H2O depletion is suggested to result in substoichiometric Li(OH)1-x , which appears to be preferentially decomposed during charging. Operando X-ray diffraction proves the cyclic formation and decomposition of the LiOH crystallites in the presence of LiI over multiple cycles, and the structural evolution provides key information for understanding and improving these highly relevant electrochemical systems 
650 4 |a Journal Article 
700 1 |a Ganapathy, Swapna  |e verfasserin  |4 aut 
700 1 |a Xu, Yaolin  |e verfasserin  |4 aut 
700 1 |a Heringa, Jouke R  |e verfasserin  |4 aut 
700 1 |a Zhu, Quanyao  |e verfasserin  |4 aut 
700 1 |a Chen, Wen  |e verfasserin  |4 aut 
700 1 |a Wagemaker, Marnix  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Chemistry of materials : a publication of the American Chemical Society  |d 1998  |g 29(2017), 4 vom: 28. Feb., Seite 1577-1586  |w (DE-627)NLM098194763  |x 0897-4756  |7 nnns 
773 1 8 |g volume:29  |g year:2017  |g number:4  |g day:28  |g month:02  |g pages:1577-1586 
856 4 0 |u http://dx.doi.org/10.1021/acs.chemmater.6b04370  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_11 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 29  |j 2017  |e 4  |b 28  |c 02  |h 1577-1586