Optimized Color Filter Arrays for Sparse Representation-Based Demosaicking

Demosaicking is the problem of reconstructing a color image from the raw image captured by a digital color camera that covers its only imaging sensor with a color filter array (CFA). Sparse representation-based demosaicking has been shown to produce superior reconstruction quality. However, almost a...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 26(2017), 5 vom: 13. Mai, Seite 2381-2393
1. Verfasser: Jia Li (VerfasserIn)
Weitere Verfasser: Chenyan Bai, Zhouchen Lin, Jian Yu
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM269786368
003 DE-627
005 20231224225234.0
007 cr uuu---uuuuu
008 231224s2017 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2017.2679440  |2 doi 
028 5 2 |a pubmed24n0899.xml 
035 |a (DE-627)NLM269786368 
035 |a (NLM)28287973 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Jia Li  |e verfasserin  |4 aut 
245 1 0 |a Optimized Color Filter Arrays for Sparse Representation-Based Demosaicking 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 20.11.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Demosaicking is the problem of reconstructing a color image from the raw image captured by a digital color camera that covers its only imaging sensor with a color filter array (CFA). Sparse representation-based demosaicking has been shown to produce superior reconstruction quality. However, almost all existing algorithms in this category use the CFAs, which are not specifically optimized for the algorithms. In this paper, we consider optimally designing CFAs for sparse representation-based demosaicking, where the dictionary is well-chosen. The fact that CFAs correspond to the projection matrices used in compressed sensing inspires us to optimize CFAs via minimizing the mutual coherence. This is more challenging than that for traditional projection matrices because CFAs have physical realizability constraints. However, most of the existing methods for minimizing the mutual coherence require that the projection matrices should be unconstrained, making them inapplicable for designing CFAs. We consider directly minimizing the mutual coherence with the CFA's physical realizability constraints as a generalized fractional programming problem, which needs to find sufficiently accurate solutions to a sequence of nonconvex nonsmooth minimization problems. We adapt the redistributed proximal bundle method to address this issue. Experiments on benchmark images testify to the superiority of the proposed method. In particular, we show that a simple sparse representation-based demosaicking algorithm with our specifically optimized CFA can outperform LSSC [1]. To the best of our knowledge, it is the first sparse representation-based demosaicking algorithm that beats LSSC in terms of CPSNR 
650 4 |a Journal Article 
700 1 |a Chenyan Bai  |e verfasserin  |4 aut 
700 1 |a Zhouchen Lin  |e verfasserin  |4 aut 
700 1 |a Jian Yu  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 26(2017), 5 vom: 13. Mai, Seite 2381-2393  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:26  |g year:2017  |g number:5  |g day:13  |g month:05  |g pages:2381-2393 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2017.2679440  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 26  |j 2017  |e 5  |b 13  |c 05  |h 2381-2393