Style Transfer Via Texture Synthesis

Style transfer is a process of migrating a style from a given image to the content of another, synthesizing a new image, which is an artistic mixture of the two. Recent work on this problem adopting convolutional neural-networks (CNN) ignited a renewed interest in this field, due to the very impress...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 26(2017), 5 vom: 13. Mai, Seite 2338-2351
Auteur principal: Elad, Michael (Auteur)
Autres auteurs: Milanfar, Peyman
Format: Article en ligne
Langue:English
Publié: 2017
Accès à la collection:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Sujets:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM26978635X
003 DE-627
005 20250221083907.0
007 cr uuu---uuuuu
008 231224s2017 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2017.2678168  |2 doi 
028 5 2 |a pubmed25n0899.xml 
035 |a (DE-627)NLM26978635X 
035 |a (NLM)28287968 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Elad, Michael  |e verfasserin  |4 aut 
245 1 0 |a Style Transfer Via Texture Synthesis 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 30.07.2018 
500 |a Date Revised 30.07.2018 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Style transfer is a process of migrating a style from a given image to the content of another, synthesizing a new image, which is an artistic mixture of the two. Recent work on this problem adopting convolutional neural-networks (CNN) ignited a renewed interest in this field, due to the very impressive results obtained. There exists an alternative path toward handling the style transfer task, via the generalization of texture synthesis algorithms. This approach has been proposed over the years, but its results are typically less impressive compared with the CNN ones. In this paper, we propose a novel style transfer algorithm that extends the texture synthesis work of Kwatra et al. (2005), while aiming to get stylized images that are closer in quality to the CNN ones. We modify Kwatra's algorithm in several key ways in order to achieve the desired transfer, with emphasis on a consistent way for keeping the content intact in selected regions, while producing hallucinated and rich style in others. The results obtained are visually pleasing and diverse, shown to be competitive with the recent CNN style transfer algorithms. The proposed algorithm is fast and flexible, being able to process any pair of content + style images 
650 4 |a Journal Article 
700 1 |a Milanfar, Peyman  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 26(2017), 5 vom: 13. Mai, Seite 2338-2351  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g volume:26  |g year:2017  |g number:5  |g day:13  |g month:05  |g pages:2338-2351 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2017.2678168  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 26  |j 2017  |e 5  |b 13  |c 05  |h 2338-2351