Expression-Invariant Age Estimation Using Structured Learning

In this paper, we investigate and exploit the influence of facial expressions on automatic age estimation. Different from existing approaches, our method jointly learns the age and expression by introducing a new graphical model with a latent layer between the age/expression labels and the features....

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 40(2018), 2 vom: 13. Feb., Seite 365-375
1. Verfasser: Lou, Zhongyu (VerfasserIn)
Weitere Verfasser: Alnajar, Fares, Alvarez, Jose M, Hu, Ninghang, Gevers, Theo
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM269786279
003 DE-627
005 20231224225234.0
007 cr uuu---uuuuu
008 231224s2018 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2017.2679739  |2 doi 
028 5 2 |a pubmed24n0899.xml 
035 |a (DE-627)NLM269786279 
035 |a (NLM)28287961 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Lou, Zhongyu  |e verfasserin  |4 aut 
245 1 0 |a Expression-Invariant Age Estimation Using Structured Learning 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 30.01.2019 
500 |a Date Revised 30.01.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In this paper, we investigate and exploit the influence of facial expressions on automatic age estimation. Different from existing approaches, our method jointly learns the age and expression by introducing a new graphical model with a latent layer between the age/expression labels and the features. This layer aims to learn the relationship between the age and expression and captures the face changes which induce the aging and expression appearance, and thus obtaining expression-invariant age estimation. Conducted on three age-expression datasets (FACES , Lifespan and NEMO ), our experiments illustrate the improvement in performance when the age is jointly learnt with expression in comparison to expression-independent age estimation. The age estimation error is reduced by 14.43, 37.75 and 9.30 percent for the FACES, Lifespan and NEMO datasets respectively. The results obtained by our graphical model, without prior-knowledge of the expressions of the tested faces, are better than the best reported ones for all datasets. The flexibility of the proposed model to include more cues is explored by incorporating gender together with age and expression. The results show performance improvements for all cues 
650 4 |a Journal Article 
700 1 |a Alnajar, Fares  |e verfasserin  |4 aut 
700 1 |a Alvarez, Jose M  |e verfasserin  |4 aut 
700 1 |a Hu, Ninghang  |e verfasserin  |4 aut 
700 1 |a Gevers, Theo  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 40(2018), 2 vom: 13. Feb., Seite 365-375  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:40  |g year:2018  |g number:2  |g day:13  |g month:02  |g pages:365-375 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2017.2679739  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 40  |j 2018  |e 2  |b 13  |c 02  |h 365-375