Generalized classification modeling of activated sludge process based on microscopic image analysis

The state of activated sludge wastewater treatment process (AS WWTP) is conventionally identified by physico-chemical measurements which are costly, time-consuming and have associated environmental hazards. Image processing and analysis-based linear regression modeling has been used to monitor the A...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Environmental technology. - 1993. - 39(2018), 1 vom: 28. Jan., Seite 24-34
1. Verfasser: Khan, Muhammad Burhan (VerfasserIn)
Weitere Verfasser: Nisar, Humaira, Ng, Choon Aun, Lo, Po Kim, Yap, Vooi Voon
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:Environmental technology
Schlagworte:Journal Article Wastewater activated sludge classification flocculation image processing modeling Sewage Waste Water
LEADER 01000naa a22002652 4500
001 NLM269698442
003 DE-627
005 20231224225048.0
007 cr uuu---uuuuu
008 231224s2018 xx |||||o 00| ||eng c
024 7 |a 10.1080/09593330.2017.1293166  |2 doi 
028 5 2 |a pubmed24n0899.xml 
035 |a (DE-627)NLM269698442 
035 |a (NLM)28278778 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Khan, Muhammad Burhan  |e verfasserin  |4 aut 
245 1 0 |a Generalized classification modeling of activated sludge process based on microscopic image analysis 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 08.03.2018 
500 |a Date Revised 07.12.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a The state of activated sludge wastewater treatment process (AS WWTP) is conventionally identified by physico-chemical measurements which are costly, time-consuming and have associated environmental hazards. Image processing and analysis-based linear regression modeling has been used to monitor the AS WWTP. But it is plant- and state-specific in the sense that it cannot be generalized to multiple plants and states. Generalized classification modeling for state identification is the main objective of this work. By generalized classification, we mean that the identification model does not require any prior information about the state of the plant, and the resultant identification is valid for any plant in any state. In this paper, the generalized classification model for the AS process is proposed based on features extracted using morphological parameters of flocs. The images of the AS samples, collected from aeration tanks of nine plants, are acquired through bright-field microscopy. Feature-selection is performed in context of classification using sequential feature selection and least absolute shrinkage and selection operator. A support vector machine (SVM)-based state identification strategy was proposed with a new agreement solver module for imbalanced data of the states of AS plants. The classification results were compared with state-of-the-art multiclass SVMs (one-vs.-one and one-vs.-all), and ensemble classifiers using the performance metrics: accuracy, recall, specificity, precision, F measure and kappa coefficient (κ). The proposed strategy exhibits better results by identification of different states of different plants with accuracy 0.9423, and κ 0.6681 for the minority class data of bulking 
650 4 |a Journal Article 
650 4 |a Wastewater 
650 4 |a activated sludge 
650 4 |a classification 
650 4 |a flocculation 
650 4 |a image processing 
650 4 |a modeling 
650 7 |a Sewage  |2 NLM 
650 7 |a Waste Water  |2 NLM 
700 1 |a Nisar, Humaira  |e verfasserin  |4 aut 
700 1 |a Ng, Choon Aun  |e verfasserin  |4 aut 
700 1 |a Lo, Po Kim  |e verfasserin  |4 aut 
700 1 |a Yap, Vooi Voon  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Environmental technology  |d 1993  |g 39(2018), 1 vom: 28. Jan., Seite 24-34  |w (DE-627)NLM098202545  |x 1479-487X  |7 nnns 
773 1 8 |g volume:39  |g year:2018  |g number:1  |g day:28  |g month:01  |g pages:24-34 
856 4 0 |u http://dx.doi.org/10.1080/09593330.2017.1293166  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 39  |j 2018  |e 1  |b 28  |c 01  |h 24-34