Blind Deconvolution With Model Discrepancies

Blind deconvolution is a strongly ill-posed problem comprising of simultaneous blur and image estimation. Recent advances in prior modeling and/or inference methodology led to methods that started to perform reasonably well in real cases. However, as we show here, they tend to fail if the convolutio...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 26(2017), 5 vom: 15. Mai, Seite 2533-2544
1. Verfasser: Kotera, Jan (VerfasserIn)
Weitere Verfasser: Smidl, Vaclav, Sroubek, Filip
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Blind deconvolution is a strongly ill-posed problem comprising of simultaneous blur and image estimation. Recent advances in prior modeling and/or inference methodology led to methods that started to perform reasonably well in real cases. However, as we show here, they tend to fail if the convolution model is violated even in a small part of the image. Methods based on variational Bayesian inference play a prominent role. In this paper, we use this inference in combination with the same prior for noise, image, and blur that belongs to the family of independent non-identical Gaussian distributions, known as the automatic relevance determination prior. We identify several important properties of this prior useful in blind deconvolution, namely, enforcing non-negativity of the blur kernel, favoring sharp images over blurred ones, and most importantly, handling non-Gaussian noise, which, as we demonstrate, is common in real scenarios. The presented method handles discrepancies in the convolution model, and thus extends applicability of blind deconvolution to real scenarios, such as photos blurred by camera motion and incorrect focus
Beschreibung:Date Completed 30.07.2018
Date Revised 30.07.2018
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1941-0042
DOI:10.1109/TIP.2017.2676981