Band Selection for Nonlinear Unmixing of Hyperspectral Images as a Maximal Clique Problem

Kernel-based nonlinear mixing models have been applied to unmix spectral information of hyperspectral images when the type of mixing occurring in the scene is too complex or unknown. Such methods, however, usually require the inversion of matrices of sizes equal to the number of spectral bands. Redu...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 26(2017), 5 vom: 15. Mai, Seite 2179-2191
1. Verfasser: Imbiriba, Tales (VerfasserIn)
Weitere Verfasser: Bermudez, Jose Carlos Moreira, Richard, Cedric
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM269695532
003 DE-627
005 20231224225044.0
007 cr uuu---uuuuu
008 231224s2017 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2017.2676344  |2 doi 
028 5 2 |a pubmed24n0899.xml 
035 |a (DE-627)NLM269695532 
035 |a (NLM)28278463 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Imbiriba, Tales  |e verfasserin  |4 aut 
245 1 0 |a Band Selection for Nonlinear Unmixing of Hyperspectral Images as a Maximal Clique Problem 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 30.07.2018 
500 |a Date Revised 30.07.2018 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Kernel-based nonlinear mixing models have been applied to unmix spectral information of hyperspectral images when the type of mixing occurring in the scene is too complex or unknown. Such methods, however, usually require the inversion of matrices of sizes equal to the number of spectral bands. Reducing the computational load of these methods remains a challenge in large-scale applications. This paper proposes a centralized band selection (BS) method for supervised unmixing in the reproducing kernel Hilbert space. It is based upon the coherence criterion, which sets the largest value allowed for correlations between the basis kernel functions characterizing the selected bands in the unmixing model. We show that the proposed BS approach is equivalent to solving a maximum clique problem, i.e., searching for the biggest complete subgraph in a graph. Furthermore, we devise a strategy for selecting the coherence threshold and the Gaussian kernel bandwidth using coherence bounds for linearly independent bases. Simulation results illustrate the efficiency of the proposed method 
650 4 |a Journal Article 
700 1 |a Bermudez, Jose Carlos Moreira  |e verfasserin  |4 aut 
700 1 |a Richard, Cedric  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 26(2017), 5 vom: 15. Mai, Seite 2179-2191  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:26  |g year:2017  |g number:5  |g day:15  |g month:05  |g pages:2179-2191 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2017.2676344  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 26  |j 2017  |e 5  |b 15  |c 05  |h 2179-2191