Non-Uniform Object-Space Pixelation (NUOP) for Penalized Maximum-Likelihood Image Reconstruction for a Single Photon Emission Microscope System

This paper presents a non-uniform object-space pixelation (NUOP) approach for image reconstruction using the penalized maximum likelihood methods. This method was developed for use with a single photon emission microscope (SPEM) system that offers an ultrahigh spatial resolution for a targeted local...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on nuclear science. - 1988. - 5(2009), 6 vom: 03. Okt., Seite 2777-2788
1. Verfasser: Meng, L J (VerfasserIn)
Weitere Verfasser: Li, Nan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2009
Zugriff auf das übergeordnete Werk:IEEE transactions on nuclear science
Schlagworte:Journal Article Non-uniform object-space pixelation (NUOP) penalized maximum-likelihood single-photon emission microscope (SPEM)
LEADER 01000caa a22002652 4500
001 NLM269466649
003 DE-627
005 20250221074350.0
007 cr uuu---uuuuu
008 231224s2009 xx |||||o 00| ||eng c
024 7 |a 10.1109/TNS.2009.2024677  |2 doi 
028 5 2 |a pubmed25n0898.xml 
035 |a (DE-627)NLM269466649 
035 |a (NLM)28255178 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Meng, L J  |e verfasserin  |4 aut 
245 1 0 |a Non-Uniform Object-Space Pixelation (NUOP) for Penalized Maximum-Likelihood Image Reconstruction for a Single Photon Emission Microscope System 
264 1 |c 2009 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 20.11.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a This paper presents a non-uniform object-space pixelation (NUOP) approach for image reconstruction using the penalized maximum likelihood methods. This method was developed for use with a single photon emission microscope (SPEM) system that offers an ultrahigh spatial resolution for a targeted local region inside mouse brain. In this approach, the object-space is divided with non-uniform pixel sizes, which are chosen adaptively based on object-dependent criteria. These include (a) some known characteristics of a target-region, (b) the associated Fisher Information that measures the weighted correlation between the responses of the system to gamma ray emissions occurred at different spatial locations, and (c) the linear distance from a given location to the target-region. In order to quantify the impact of this non-uniform pixelation approach on image quality, we used the Modified Uniform Cramer-Rao bound (MUCRB) to evaluate the local resolution-variance and bias-variance tradeoffs achievable with different pixelation strategies. As demonstrated in this paper, an efficient object-space pixelation could improve the speed of computation by 1-2 orders of magnitude, whilst maintaining an excellent reconstruction for the target-region. This improvement is crucial for making the SPEM system a practical imaging tool for mouse brain studies. The proposed method also allows rapid computation of the first and second order statistics of reconstructed images using analytical approximations, which is the key for the evaluation of several analytical system performance indices for system design and optimization 
650 4 |a Journal Article 
650 4 |a Non-uniform object-space pixelation (NUOP) 
650 4 |a penalized maximum-likelihood 
650 4 |a single-photon emission microscope (SPEM) 
700 1 |a Li, Nan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on nuclear science  |d 1988  |g 5(2009), 6 vom: 03. Okt., Seite 2777-2788  |w (DE-627)NLM098149350  |x 0018-9499  |7 nnns 
773 1 8 |g volume:5  |g year:2009  |g number:6  |g day:03  |g month:10  |g pages:2777-2788 
856 4 0 |u http://dx.doi.org/10.1109/TNS.2009.2024677  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 5  |j 2009  |e 6  |b 03  |c 10  |h 2777-2788