|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM269434135 |
003 |
DE-627 |
005 |
20231224224544.0 |
007 |
cr uuu---uuuuu |
008 |
231224s2017 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.201605807
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0898.xml
|
035 |
|
|
|a (DE-627)NLM269434135
|
035 |
|
|
|a (NLM)28251710
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Kalluri, Sujith
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Feasibility of Cathode Surface Coating Technology for High-Energy Lithium-ion and Beyond-Lithium-ion Batteries
|
264 |
|
1 |
|c 2017
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 18.07.2018
|
500 |
|
|
|a Date Revised 30.09.2020
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
|
520 |
|
|
|a Cathode material degradation during cycling is one of the key obstacles to upgrading lithium-ion and beyond-lithium-ion batteries for high-energy and varied-temperature applications. Herein, we highlight recent progress in material surface-coating as the foremost solution to resist the surface phase-transitions and cracking in cathode particles in mono-valent (Li, Na, K) and multi-valent (Mg, Ca, Al) ion batteries under high-voltage and varied-temperature conditions. Importantly, we shed light on the future of materials surface-coating technology with possible research directions. In this regard, we provide our viewpoint on a novel hybrid surface-coating strategy, which has been successfully evaluated in LiCoO2 -based-Li-ion cells under adverse conditions with industrial specifications for customer-demanding applications. The proposed coating strategy includes a first surface-coating of the as-prepared cathode powders (by sol-gel) and then an ultra-thin ceramic-oxide coating on their electrodes (by atomic-layer deposition). What makes it appealing for industry applications is that such a coating strategy can effectively maintain the integrity of materials under electro-mechanical stress, at the cathode particle and electrode- levels. Furthermore, it leads to improved energy-density and voltage retention at 4.55 V and 45 °C with highly loaded electrodes (≈24 mg.cm-2 ). Finally, the development of this coating technology for beyond-lithium-ion batteries could be a major research challenge, but one that is viable
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Review
|
650 |
|
4 |
|a beyond-lithium-ion batteries
|
650 |
|
4 |
|a cathode materials
|
650 |
|
4 |
|a energy density
|
650 |
|
4 |
|a lithium-ion batteries
|
650 |
|
4 |
|a surface coating technology
|
700 |
1 |
|
|a Yoon, Moonsu
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Jo, Minki
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Liu, Hua Kun
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Dou, Shi Xue
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Cho, Jaephil
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Guo, Zaiping
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 29(2017), 48 vom: 27. Dez.
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:29
|g year:2017
|g number:48
|g day:27
|g month:12
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.201605807
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 29
|j 2017
|e 48
|b 27
|c 12
|