Fabrication of Ellipsoidal Silica Yolk-Shell Magnetic Structures with Extremely Stable Au Nanoparticles as Highly Reactive and Recoverable Catalysts

A novel strategy was reported for the fabrication of yolk-shell magnetic MFSVmS-Au nanocomposites (NCs) consisting of double-layered ellipsoidal mesoporous silica shells, numerous sub-4 nm Au nanoparticles (NPs), and magnetic Fe central cores. The hierarchical FSVmS NCs with ellipsoidal α-Fe2O3mSiO2...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 33(2017), 11 vom: 21. März, Seite 2698-2708
1. Verfasser: Fang, Jiasheng (VerfasserIn)
Weitere Verfasser: Zhang, Yiwei, Zhou, Yuming, Zhao, Shuo, Zhang, Chao, Zhang, Hongxing, Sheng, Xiaoli, Wang, Kunpeng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
Beschreibung
Zusammenfassung:A novel strategy was reported for the fabrication of yolk-shell magnetic MFSVmS-Au nanocomposites (NCs) consisting of double-layered ellipsoidal mesoporous silica shells, numerous sub-4 nm Au nanoparticles (NPs), and magnetic Fe central cores. The hierarchical FSVmS NCs with ellipsoidal α-Fe2O3mSiO2/mSiO2 as yolks/shells were first prepared through the facile sol-gel template-assisted method, and plenty of extremely stable ultrafine Au NPs were postencapsulated within interlayer cavities through the unique deposition-precipitation method mediated with Au(en)2Cl3 compounds. Notably, ethylenediamine ligands were used to synthesize the stable cationic complexes, [Au(en)2]3+, that readily underwent the deprotonation reaction to chemically modify negatively charged mesoporous silica under alkaline conditions. The subsequent two-stage programmed hydrogen annealing initiated the in situ formation of Au NPs and the reduction of α-Fe2O3 to magnetic Fe, where the synthesized Au NPs were highly resistant to harsh thermal sintering even at 700 °C. Given its structural superiority and magnetic nature, the MFSVmS-Au was demonstrated to be a highly efficient and recoverable nanocatalyst with superior activity and reusability toward the reduction of 4-nitrophenol to 4-aminophenol, and the pristine morphology was retained after six recycling tests
Beschreibung:Date Completed 11.05.2018
Date Revised 11.05.2018
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.6b03873