Ultrathin Iron-Cobalt Oxide Nanosheets with Abundant Oxygen Vacancies for the Oxygen Evolution Reaction

© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 29(2017), 17 vom: 01. Mai
1. Verfasser: Zhuang, Linzhou (VerfasserIn)
Weitere Verfasser: Ge, Lei, Yang, Yisu, Li, Mengran, Jia, Yi, Yao, Xiangdong, Zhu, Zhonghua
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article oxygen evolution reaction oxygen vacancies sodium borohydride ultrathin nanosheets
LEADER 01000naa a22002652 4500
001 NLM269323503
003 DE-627
005 20231224224336.0
007 cr uuu---uuuuu
008 231224s2017 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.201606793  |2 doi 
028 5 2 |a pubmed24n0897.xml 
035 |a (DE-627)NLM269323503 
035 |a (NLM)28240388 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhuang, Linzhou  |e verfasserin  |4 aut 
245 1 0 |a Ultrathin Iron-Cobalt Oxide Nanosheets with Abundant Oxygen Vacancies for the Oxygen Evolution Reaction 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 18.07.2018 
500 |a Date Revised 30.09.2020 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 
520 |a Electrochemical water splitting is a promising method for storing light/electrical energy in the form of H2 fuel; however, it is limited by the sluggish anodic oxygen evolution reaction (OER). To improve the accessibility of H2 production, it is necessary to develop an efficient OER catalyst with large surface area, abundant active sites, and good stability, through a low-cost fabrication route. Herein, a facile solution reduction method using NaBH4 as a reductant is developed to prepare iron-cobalt oxide nanosheets (Fex Coy -ONSs) with a large specific surface area (up to 261.1 m2 g-1 ), ultrathin thickness (1.2 nm), and, importantly, abundant oxygen vacancies. The mass activity of Fe1 Co1 -ONS measured at an overpotential of 350 mV reaches up to 54.9 A g-1 , while its Tafel slope is 36.8 mV dec-1 ; both of which are superior to those of commercial RuO2 , crystalline Fe1 Co1 -ONP, and most reported OER catalysts. The excellent OER catalytic activity of Fe1 Co1 -ONS can be attributed to its specific structure, e.g., ultrathin nanosheets that could facilitate mass diffusion/transport of OH- ions and provide more active sites for OER catalysis, and oxygen vacancies that could improve electronic conductivity and facilitate adsorption of H2 O onto nearby Co3+ sites 
650 4 |a Journal Article 
650 4 |a oxygen evolution reaction 
650 4 |a oxygen vacancies 
650 4 |a sodium borohydride 
650 4 |a ultrathin nanosheets 
700 1 |a Ge, Lei  |e verfasserin  |4 aut 
700 1 |a Yang, Yisu  |e verfasserin  |4 aut 
700 1 |a Li, Mengran  |e verfasserin  |4 aut 
700 1 |a Jia, Yi  |e verfasserin  |4 aut 
700 1 |a Yao, Xiangdong  |e verfasserin  |4 aut 
700 1 |a Zhu, Zhonghua  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 29(2017), 17 vom: 01. Mai  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:29  |g year:2017  |g number:17  |g day:01  |g month:05 
856 4 0 |u http://dx.doi.org/10.1002/adma.201606793  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 29  |j 2017  |e 17  |b 01  |c 05