|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM26926549X |
003 |
DE-627 |
005 |
20231224224223.0 |
007 |
cr uuu---uuuuu |
008 |
231224s2017 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.201606679
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0897.xml
|
035 |
|
|
|a (DE-627)NLM26926549X
|
035 |
|
|
|a (NLM)28234421
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Yang, Yu
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Waterproof, Ultrahigh Areal-Capacitance, Wearable Supercapacitor Fabrics
|
264 |
|
1 |
|c 2017
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 18.07.2018
|
500 |
|
|
|a Date Revised 30.09.2020
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
|
520 |
|
|
|a High-performance supercapacitors (SCs) are promising energy storage devices to meet the pressing demand for future wearable applications. Because the surface area of a human body is limited to 2 m2 , the key challenge in this field is how to realize a high areal capacitance for SCs, while achieving rapid charging, good capacitive retention, flexibility, and waterproofing. To address this challenge, low-cost materials are used including multiwall carbon nanotube (MWCNT), reduced graphene oxide (RGO), and metallic textiles to fabricate composite fabric electrodes, in which MWCNT and RGO are alternatively vacuum-filtrated directly onto Ni-coated cotton fabrics. The composite fabric electrodes display typical electrical double layer capacitor behavior, and reach an ultrahigh areal capacitance up to 6.2 F cm-2 at a high areal current density of 20 mA cm-2 . All-solid-state fabric-type SC devices made with the composite fabric electrodes and water-repellent treatment can reach record-breaking performance of 2.7 F cm-2 at 20 mA cm-2 at the first charge-discharge cycle, 3.2 F cm-2 after 10 000 charge-discharge cycles, zero capacitive decay after 10 000 bending tests, and 10 h continuous underwater operation. The SC devices are easy to assemble into tandem structures and integrate into garments by simple sewing
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a electronic textiles
|
650 |
|
4 |
|a energy storage
|
650 |
|
4 |
|a polymer-assisted metal deposition
|
650 |
|
4 |
|a supercapacitor
|
650 |
|
4 |
|a wearable electronics
|
700 |
1 |
|
|a Huang, Qiyao
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Niu, Liyong
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, Dongrui
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yan, Casey
|e verfasserin
|4 aut
|
700 |
1 |
|
|a She, Yiyi
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zheng, Zijian
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 29(2017), 19 vom: 05. Mai
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:29
|g year:2017
|g number:19
|g day:05
|g month:05
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.201606679
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 29
|j 2017
|e 19
|b 05
|c 05
|