Effects of 6-Hydroxyceramides on the Thermotropic Phase Behavior and Permeability of Model Skin Lipid Membranes
Ceramides (Cer) based on 6-hydroxysphingosine are important components of the human skin barrier, the stratum corneum. Although diminished concentrations of 6-hydroxyCer have been detected in skin diseases such as atopic dermatitis, our knowledge on these unusual sphingolipids, which have only been...
Publié dans: | Langmuir : the ACS journal of surfaces and colloids. - 1985. - 33(2017), 11 vom: 21. März, Seite 2890-2899 |
---|---|
Auteur principal: | |
Autres auteurs: | , , , |
Format: | Article en ligne |
Langue: | English |
Publié: |
2017
|
Accès à la collection: | Langmuir : the ACS journal of surfaces and colloids |
Sujets: | Journal Article Research Support, Non-U.S. Gov't Ceramides Cholesterol Esters Fatty Acids, Nonesterified Membrane Lipids Cholesterol 97C5T2UQ7J N-(alpha-hydroxyoctadecanoyl)phytosphingosine F1X8L2B00J plus... |
Résumé: | Ceramides (Cer) based on 6-hydroxysphingosine are important components of the human skin barrier, the stratum corneum. Although diminished concentrations of 6-hydroxyCer have been detected in skin diseases such as atopic dermatitis, our knowledge on these unusual sphingolipids, which have only been found in the skin, is limited. In this work, we investigate the biophysical behavior of N-lignoceroyl-6-hydroxysphingosine (Cer NH) in multilamellar lipid membranes composed of Cer/free fatty acids (FFAs) (C16-C24)/cholesterol/cholesteryl sulfate. To probe the Cer structure-activity relationships, we compared Cer NH membranes with membranes containing Cer with sphingosine (Cer NS), dihydrosphingosine, and phytosphingosine (Cer NP), all with the same acyl chain length (C24). Compared with Cer NS, 6-hydroxylation of Cer not only increased membrane water loss and permeability in a lipophilic model compound but also dramatically increased the membrane opposition to electrical current, which is proportional to the flux of ions. Infrared spectroscopy revealed that Cer hydroxylation (in either Cer NH or Cer NP) increased the main transition temperature of the membrane but prevented good Cer mixing with FFAs. X-ray powder diffraction showed not only lamellar phases with shorter periodicity upon Cer hydroxylation but also the formation of an unusually long periodicity phase (d = 10.6 nm) in Cer NH-containing membranes. Thus, 6-hydroxyCer behaves differently from sphingosine- and phytosphingosine-based Cer. In particular, the ability to form a long-periodicity lamellar phase and highly limited permeability to ions indicate the manner in which 6-hydroxylated Cer contribute to the skin barrier function |
---|---|
Description: | Date Completed 24.09.2018 Date Revised 24.09.2018 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1520-5827 |
DOI: | 10.1021/acs.langmuir.7b00184 |