Bubble-Sheet-Like Interface Design with an Ultrastable Solid Electrolyte Layer for High-Performance Dual-Ion Batteries

© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 29(2017), 17 vom: 11. Mai
1. Verfasser: Qin, Panpan (VerfasserIn)
Weitere Verfasser: Wang, Meng, Li, Na, Zhu, Haili, Ding, Xuan, Tang, Yongbing
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article aluminum anodes dual-ion batteries hollow nanostructures solid electrolyte interfaces
LEADER 01000naa a22002652 4500
001 NLM269189386
003 DE-627
005 20231224224101.0
007 cr uuu---uuuuu
008 231224s2017 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.201606805  |2 doi 
028 5 2 |a pubmed24n0897.xml 
035 |a (DE-627)NLM269189386 
035 |a (NLM)28224685 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Qin, Panpan  |e verfasserin  |4 aut 
245 1 0 |a Bubble-Sheet-Like Interface Design with an Ultrastable Solid Electrolyte Layer for High-Performance Dual-Ion Batteries 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 18.07.2018 
500 |a Date Revised 30.09.2020 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 
520 |a In this work, a bubble-sheet-like hollow interface design on Al foil anode to improve the cycling stability and rate performance of aluminum anode based dual-ion battery is reported, in which, a carbon-coated hollow aluminum anode is used as both anode materials and current collector. This anode structure can guide the alloying position inside the hollow nanospheres, and also confine the alloy sizes within the hollow nanospheres, resulting in significantly restricted volumetric expansion and ultrastable solid electrolyte interface (SEI). As a result, the battery demonstrates an excellent long-term cycling stability within 1500 cycles with ≈99% capacity retention at 2 C. Moreover, this cell displays an energy density of 169 Wh kg-1 even at high power density of 2113 W kg-1 (10 C, charge and discharge within 6 min), which is much higher than most of conventional lithium ion batteries. The interfacial engineering strategy shown in this work to stabilize SEI layer and control the alloy forming position could be generalized to promote the research development of metal anodes based battery systems 
650 4 |a Journal Article 
650 4 |a aluminum anodes 
650 4 |a dual-ion batteries 
650 4 |a hollow nanostructures 
650 4 |a solid electrolyte interfaces 
700 1 |a Wang, Meng  |e verfasserin  |4 aut 
700 1 |a Li, Na  |e verfasserin  |4 aut 
700 1 |a Zhu, Haili  |e verfasserin  |4 aut 
700 1 |a Ding, Xuan  |e verfasserin  |4 aut 
700 1 |a Tang, Yongbing  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 29(2017), 17 vom: 11. Mai  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:29  |g year:2017  |g number:17  |g day:11  |g month:05 
856 4 0 |u http://dx.doi.org/10.1002/adma.201606805  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 29  |j 2017  |e 17  |b 11  |c 05