Hierarchical Latent Concept Discovery for Video Event Detection

Semantic information is important for video event detection. How to automatically discover, model, and utilize semantic information to facilitate video event detection has been a challenging problem. In this paper, we propose a novel hierarchical video event detection model, which deliberately unifi...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 26(2017), 5 vom: 20. Mai, Seite 2149-2162
1. Verfasser: Li, Chao (VerfasserIn)
Weitere Verfasser: Huang, Zi, Yang, Yang, Cao, Jiewei, Sun, Xiaoshuai, Shen, Heng Tao
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM26916278X
003 DE-627
005 20231224224031.0
007 cr uuu---uuuuu
008 231224s2017 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2017.2670782  |2 doi 
028 5 2 |a pubmed24n0897.xml 
035 |a (DE-627)NLM26916278X 
035 |a (NLM)28221996 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Li, Chao  |e verfasserin  |4 aut 
245 1 0 |a Hierarchical Latent Concept Discovery for Video Event Detection 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 30.07.2018 
500 |a Date Revised 30.07.2018 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Semantic information is important for video event detection. How to automatically discover, model, and utilize semantic information to facilitate video event detection has been a challenging problem. In this paper, we propose a novel hierarchical video event detection model, which deliberately unifies the processes of underlying semantics discovery and event modeling from video data. Specially, different from most of the approaches based on manually pre-defined concepts, we devise an effective model to automatically uncover video semantics by hierarchically capturing latent static-visual concepts in frame-level and latent activity concepts (i.e., temporal sequence relationships of static-visual concepts) in segment-level. The unified model not only enables a discriminative and descriptive representation for videos, but also alleviates error propagation problem from video representation to event modeling existing in previous methods. A max-margin framework is employed to learn the model. Extensive experiments on four challenging video event datasets, i.e., MED11, CCV, UQE50, and FCVID, have been conducted to demonstrate the effectiveness of the proposed method 
650 4 |a Journal Article 
700 1 |a Huang, Zi  |e verfasserin  |4 aut 
700 1 |a Yang, Yang  |e verfasserin  |4 aut 
700 1 |a Cao, Jiewei  |e verfasserin  |4 aut 
700 1 |a Sun, Xiaoshuai  |e verfasserin  |4 aut 
700 1 |a Shen, Heng Tao  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 26(2017), 5 vom: 20. Mai, Seite 2149-2162  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:26  |g year:2017  |g number:5  |g day:20  |g month:05  |g pages:2149-2162 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2017.2670782  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 26  |j 2017  |e 5  |b 20  |c 05  |h 2149-2162