Contextual Noise Reduction for Domain Adaptive Near-Duplicate Retrieval on Merchandize Images

In this paper, we have proposed a novel method which utilizes the contextual relationship among visual words for reducing the Quantization errors in near-duplicate image retrieval (NDR). Instead of following the track of conventional NDR techniques which usually search new solutions by borrowing ide...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 26(2017), 8 vom: 16. Aug., Seite 3896-3910
1. Verfasser: Yang, Zhen-Qun (VerfasserIn)
Weitere Verfasser: Wei, Xiao-Yong, Yi, Zhang, Friedland, Gerald
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM26906639X
003 DE-627
005 20231224223837.0
007 cr uuu---uuuuu
008 231224s2017 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2017.2669842  |2 doi 
028 5 2 |a pubmed24n0896.xml 
035 |a (DE-627)NLM26906639X 
035 |a (NLM)28212085 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Yang, Zhen-Qun  |e verfasserin  |4 aut 
245 1 0 |a Contextual Noise Reduction for Domain Adaptive Near-Duplicate Retrieval on Merchandize Images 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 20.11.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In this paper, we have proposed a novel method which utilizes the contextual relationship among visual words for reducing the Quantization errors in near-duplicate image retrieval (NDR). Instead of following the track of conventional NDR techniques which usually search new solutions by borrowing ideas from the text domain, we propose to model the problem back to image domain, which results in a more natural way of solution search. The idea of the proposed method is to construct a context graph that encapsulates the contextual relationship within an image and treat the graph as a pseudo-image, so that classical image filters can be adopted to reduce the mismapped visual words which are contextually inconsistent with others.With these contextual noises reduced, the method provides purified inputs to the subsequent processes in NDR, and improves the overall accuracy. More importantly, the purification further increases the sparsity of the image feature vectors, which thus speeds up the conventional methods by 1662% times and makes NDR practical to online applications on merchandize images where the requirement of response time is critical. The way of considering contextual noise reduction in image domain also makes the problem open to all sophisticated filters. Our study shows the classic anisotropic diffusion filter can be employed to address the cross-domain issue, resulting in the superiority of the method to conventional ones in both effectiveness and efficiency 
650 4 |a Journal Article 
700 1 |a Wei, Xiao-Yong  |e verfasserin  |4 aut 
700 1 |a Yi, Zhang  |e verfasserin  |4 aut 
700 1 |a Friedland, Gerald  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 26(2017), 8 vom: 16. Aug., Seite 3896-3910  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:26  |g year:2017  |g number:8  |g day:16  |g month:08  |g pages:3896-3910 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2017.2669842  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 26  |j 2017  |e 8  |b 16  |c 08  |h 3896-3910